Articles: traumatic-brain-injuries.
-
Experimental neurology · Nov 2013
Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury.
Traumatic brain injury (TBI) differs in severity from severe to mild. This study examined whether a combination of the drugs minocycline (MINO) plus N-acetylcysteine (NAC) produces behavioral and histological improvements in a mild version of the controlled cortical impact model of TBI (mCCI). Following mCCI, rats acquired an active place avoidance task by learning the location of a stationary shock zone on a rotating arena. ⋯ MINO plus NAC acted synergistically to increase Iba-1 expression since MINO alone suppressed expression and NAC alone had no effect. Despite the known anti-inflammatory actions of the individual drugs, MINO plus NAC appeared to modulate, rather than suppress neuroinflammation. This modulation of neuroinflammation may underlie the synergistic improvement in memory and set-shifting by the drug combination after mCCI.
-
Neurorehabil Neural Repair · Nov 2013
Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury.
Prophylactic treatment with antiepileptic drugs (AEDs) has been recommended to prevent early seizure onset in patients with traumatic brain injury (TBI). However, the potential neuroprotective and/or detrimental effects of prophylactic AED treatment on behavioral and cognitive function after TBI are not well studied. ⋯ These results suggest that daily LEV treatment has beneficial effects on histological, molecular, and behavioral elements of neurological recovery after TBI, in part, via modulation of neuroinflammatory and excitatory pathways.
-
Neuroscience letters · Oct 2013
Mannitol enhances therapeutic effects of intra-arterial transplantation of mesenchymal stem cells into the brain after traumatic brain injury.
Traumatic brain injury (TBI) sustained in a traffic accident or a fall is a major cause of death that affects a broad range of ages. The aim of this study was to investigate the therapeutic effects of intra-arterial transplantation of mesenchymal stem cells (MSCs) combined with hypertonic glycerol (25%) or mannitol (25%) in a TBI model of rats. TBI models were produced with a fluid percussion device. ⋯ Immunohistochemically, more MSCs were observed in the injured brain tissues of mannitol-treated rats than in glycerol or PBS-treated rats at 24h after transplantation. Intra-arterial transplantation of MSCs combined with mannitol is an effective treatment in a TBI model of rats. This technique might be used for patients with diseases of the central nervous system including TBI.