Articles: traumatic-brain-injuries.
-
Traumatic brain injury (TBI) can lead to movement and balance deficits. In addition to physical therapy, brain-based neurorehabilitation efforts have begun to show promise in improving these deficits. The present study investigated the effectiveness of translingual neural stimulation (TLNS) on patients with mild-to-moderate TBI (mmTBI) and related brain connectivity using a resting-state functional connectivity (RSFC) approach. ⋯ Although the limited sample size may have led to lack of significant correlations with functional assessments, these results provide preliminary evidence that TLNS in conjunction with physical therapy can induce brain plasticity in TBI patients with balance and movement deficits.
-
Physiological functions with circadian rhythmicity are often disrupted during illness. ⋯ Circadian rhythmicity of vital signs at ICU discharge is not predictive of GOS-6 in patients with TBI.
-
Neurotrauma accounts for over 24,000 hospitalizations annually in Canada and has a significant impact in many developed countries. Among those affected, indigenous peoples are disproportionately impacted. The present scoping review explores the factors contributing to neurotrauma in indigenous populations and potential strategies to address this health care issue at a global level. ⋯ Systems-level interventions guided by indigenous community members will help to address the disparities that indigenous peoples face in the care and rehabilitation of neurotrauma. This study will inform further research of culturally appropriate approaches to reduce neurotrauma among indigenous peoples at a global level.
-
Traumatic brain injuries (TBI) represent a significant percentage of critical injuries in military conflicts. Following injury, wounded warfighters are often subjected to multiple aeromedical evacuations (AE) and associated hypobaria, yet the impact in TBI patients remains to be characterized. This study evaluated the impact of two consecutive simulated AEs in a fluid-percussion TBI model in swine to characterize these effects. ⋯ Aeromedical evacuation in swine was not associated with significant differences in physiologic measures, cytokine expression or levels of neuronal degeneration. Histological examination revealed higher risk of meningeal inflammatory response and leucocytosis in swine exposed to hypobaria.
-
Journal of neurotrauma · Nov 2022
Understanding primary blast injury: High frequency pressure acutely disrupts neuronal network dynamics in cerebral organoids.
Blast exposure represents a common occupational risk capable of generating mild to severe traumatic brain injuries (TBI). During blast exposure, a pressure shockwave passes through the skull and exposes brain tissue to complex pressure waveforms. The primary neurophysiological response to blast-induced pressure waveforms remains poorly understood. ⋯ Conversely, organoids exposed to higher amplitude pressure (350k Pa) displayed drastic neurophysiological differences that failed to recover within 24 h. Further, lower amplitude "blast" (250 kPa) did not induce cellular damage whereas the higher amplitude "blast" (350 kPa) generated greater apoptosis throughout each organoid. Our data indicate that specific features of pressure waves found intracranially during blast TBI have varied effects on neurophysiological activity that can occur even without cellular damage.