Articles: traumatic-brain-injuries.
-
Local and systemic inflammatory responses are initiated early after traumatic brain injury (TBI), and may play a key role in the secondary injury processes resulting in neuronal loss and neurological deficits. However, the mechanisms responsible for the rapid expansion of neuroinflammation and its long-term progression have yet to be elucidated. Here, we investigate the role of microparticles (MP), a member of the extracellular vesicle family, in the exchange of pro-inflammatory molecules between brain immune cells, as well as their transfer to the systemic circulation, as key pathways of inflammation propagation following brain trauma. ⋯ These data provide further insights into the mechanisms underlying the development and dissemination of neuroinflammation after TBI. MP loaded with pro-inflammatory molecules initially released by microglia following trauma can activate additional microglia that may contribute to progressive neuroinflammatory response in the injured brain, as well as stimulate systemic immune responses. Due to their ability to independently initiate inflammatory responses, MP derived from activated microglia may provide a potential therapeutic target for other neurological disorders in which neuroinflammation may be a contributing factor.
-
The sideline assessment of concussion is challenging, given its variable presentations, the limited sensitivity and specificity of sideline assessment tools, and how the presentation of the injury evolves over time. In addition, the diagnostic process, as well as the tools used to assess and manage concussion, continue to progress as research and what we know about concussion advance. This paper focuses on the initial assessment on the sideline by reviewing the concussion-evaluation literature, drawing from clinical experience to emphasize a standardized approach, and underscoring the importance of both familiarity with the athlete and clinical judgment. ⋯ The sideline assessment of sport-related concussion is challenging given the elusiveness and variability of presentation, reliance on athlete-reported symptoms, and the varying specificity and sensitivity values of sideline assessment tools. In addition, the recognition of injury and assessment often occur in a time-pressured environment, requiring rapid disposition and decision making. Clinicians should begin the evaluation by assessing for cervical spine injury, intracranial bleeding, and other injuries that can present in a similar fashion or in addition to concussion. The sideline concussion evaluation should consist of a symptom assessment and a neurologic examination that addresses cognition (briefly), cranial nerve function, and balance. Emerging tools that assess visual tracking may provide additional information. The sensitivity and specificity of commonly implemented sideline assessment tools are generally good to very good, especially for symptom scores and cognitive evaluations performed within 48 hours of injury, and they are improved when a baseline evaluation is available for comparison. Serial assessments are often necessary as objective signs and symptoms may be delayed. A standardized assessment is paramount in evaluating the athlete with a suspected concussion, but there is no replacement for being familiar with the athlete and using clinical judgment when the athlete seems "not right" despite a "normal" sideline assessment. Ultimately, the clinician should err on the side of caution when making a return-to-play decision.
-
Arch Clin Neuropsychol · Mar 2017
The Development and Psychometric Evaluation of a Supplementary Index Score of the Neuropsychological Assessment Battery Screening Module that is Sensitive to Traumatic Brain Injury.
This study examines the validity of the NAB Screening Module (screening module of the neuropsychological assessment battery, S-NAB) in an acute traumatic brain injury (TBI) inpatient population and provides psychometric evaluation of an original index sensitive to TBI impairment. ⋯ The S-NAB TBI index is a robust, reliable screening index for use with acute TBI patients, which is sensitive to the effects of acute TBI. It affords a briefer cognitive screen than the S-NAB and demonstrates a dose response relationship to TBI severity.
-
Journal of neurotrauma · Mar 2017
[18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats.
Non-invasive measurements of brain metabolism using 18F-fluorodeoxyglucose (FDG) with positron emission tomography (PET) may provide important information about injury severity following traumatic brain injury (TBI). There is growing interest in the potential of combining functional PET imaging with anatomical and functional magnetic resonance imaging (MRI). This study aimed to investigate the effectiveness of combining clinically available FDG-PET with T2 and diffusion MR imaging, with a particular focus on inflammation and the influence of glial alterations after injury. ⋯ Glial activation was not detected in the amygdala but neuronal damage was evident, as the amygdala was the only region to show a reduction in both FDG uptake and ADC at sub-acute time-points. Overall, FDG-PET detected glial activation but was confounded by the presence of cell damage, whereas MRI consistently detected cell damage but was confounded by glial activation. These results demonstrate that FDG-PET and MRI can be used together to improve our understanding of the complex alterations in the brain after TBI.
-
Journal of neurosurgery · Mar 2017
ReviewHelmet efficacy against concussion and traumatic brain injury: a review.
Helmets are one of the earliest and most enduring methods of personal protection in human civilization. Although primarily developed for combat purposes in ancient times, modern helmets have become highly diversified to sports, recreation, and transportation. History and the scientific literature exhibit that helmets continue to be the primary and most effective prevention method against traumatic brain injury (TBI), which presents high mortality and morbidity rates in the US. ⋯ The objective of this literature review was to explore the historical evolution of helmets, consider the effectiveness of helmets in protecting against severe intracranial injuries, and examine recent evidence on helmet efficacy against concussion. It was also the goal of this report to emphasize the need for more research on helmet efficacy with improved experimental design and quantitative standardization of assessments for concussion and TBI, and to promote expanded involvement of neurosurgery in studying the quantitative diagnostics of concussion and TBI. Recent evidence summarized by this literature review suggests that helmeted patients do not have better relative clinical outcome and protection against concussion than unhelmeted patients.