Articles: traumatic-brain-injuries.
-
Decompressive surgery to reduce pressure under the skull varies from a burrhole, bone flap to removal of a large skull segment. Decompressive craniectomy is the removal of a large enough segment of skull to reduce refractory intracranial pressure and to maintain cerebral compliance for the purpose of preventing neurologic deterioration. Decompressive hemicraniectomy and bifrontal craniectomy are the most commonly performed procedures. ⋯ The ethical predicament of deciding to go ahead with a major neurosurgical procedure with the purpose of avoiding brain death from displacement, but resulting in prolonged severe disability in many, are addressed. This chapter describes indications, surgical techniques, and complications. It reviews results of recent clinical trials and provides a reasonable assessment for practice.
-
J Int Neuropsychol Soc · Jan 2017
Neuropsychological Profile of Lifetime Traumatic Brain Injury in Older Veterans.
The aim of this study was to characterize the neuropsychological profile of lifetime traumatic brain injury (TBI) in older Veterans. ⋯ The neuropsychological profile of lifetime TBI in older Veterans is characterized by slowed processing speed and executive dysfunction, especially among those with greater injury burden. This pattern may reflect long-standing deficits or a TBI-associated cognitive decline process distinct from Alzheimer's disease. (JINS, 2017, 23, 56-64).
-
Survival is significantly reduced by either hypotension or hypoxia during the out-of-hospital management of major traumatic brain injury. However, only a handful of small studies have investigated the influence of the combination of both hypotension and hypoxia occurring together. In patients with major traumatic brain injury, we evaluate the associations between mortality and out-of-hospital hypotension and hypoxia separately and in combination. ⋯ In this statewide analysis of major traumatic brain injury, combined out-of-hospital hypotension and hypoxia were associated with significantly increased mortality. This effect on survival persisted even after controlling for multiple potential confounders. In fact, the adjusted odds of death for patients with both hypotension and hypoxia were more than 2 times greater than for those with either hypotension or hypoxia alone. These findings seem supportive of the emphasis on aggressive prevention and treatment of hypotension and hypoxia reflected in the current emergency medical services traumatic brain injury treatment guidelines but clearly reveal the need for further study to determine their influence on outcome.
-
Journal of neurotrauma · Jan 2017
Traumatic brain injury causes endothelial dysfunction in the systemic microcirculation through arginase-1-dependent uncoupling of endothelial nitric oxide synthase.
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. ⋯ Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O2- production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
-
Journal of neurotrauma · Jan 2017
TBI induces alterations in cortical glutamate uptake without a reduction in GLT-1 protein expression.
We hypothesize that the primary mechanism for removal of glutamate from the extracellular space is altered after traumatic brain injury (TBI). To evaluate this hypothesis, we initiated TBI in adult male rats using a 2.0 atm lateral fluid percussion injury (LFPI) model. In the ipsilateral cortex and hippocampus, we found no differences in expression of the primary glutamate transporter in the brain (GLT-1) 24 h after TBI. ⋯ Exploratory studies using an inhibitor of Akt suggest selective activation of kinases in LFPI versus controls. Ingenuity pathway analyses of implicated kinases from our network model found apoptosis and cell death pathways as top functions in acute LFPI. Taken together, our data suggest diminished activity of glutamate transporters in the prefrontal cortex, with no changes in protein expression of the primary glutamate transporter GLT-1, and global alterations in signaling networks that include serine-threonine kinases that are known modulators of glutamate transport activity.