Articles: traumatic-brain-injuries.
-
Currently, traumatic brain injury (TBI) is the leading cause of death or disabilities in young individuals worldwide. The multi-complexity of its pathogenesis as well as impermeability of the blood-brain barrier (BBB) makes the drug choice and delivery very challenging. The brain-derived neurotrophic factor (BDNF) regulates neuronal plasticity, neuronal cell growth, proliferation, cell survival and long-term memory. ⋯ This study also showed using the passive avoidance (PA) test, that IV injection of NP-BDNF-PX 3 h post-injury prolonged the latent time in mice with TBI thereby reversing cognitive deficits caused by brain trauma. Finally, neurological severity score test demonstrated that our compound efficiently reduced the scores at day 7 after the injury indicating the improvement of neurological deficit in animals with TBI. This study shows that PLGA nanoparticles coated with PX effectively delivered BDNF into the brain, and improved neurological and cognitive deficits in TBI mice, thereby providing a neuroprotective effect.
-
Brain Behav. Immun. · Nov 2016
NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury.
Following traumatic brain injury (TBI), activation of microglia and peripherally derived inflammatory macrophages occurs in association with tissue damage. This neuroinflammatory response may have beneficial or detrimental effects on neuronal survival, depending on the functional polarization of these cells along a continuum from M1-like to M2-like activation states. The mechanisms that regulate M1-like and M2-like activation after TBI are not well understood, but appear in part to reflect the redox state of the lesion microenvironment. ⋯ NOX2 deficiency also promotes M2-like activation after CCI, through increased IL-4Rα signaling in infiltrating macrophages, suggesting that NOX2 acts as a critical switch between M1- and M2-like activation states after TBI. Administration of gp91ds-tat to wild-type CCI mice starting at 24h post-injury reduces deficits in cognitive function and increased M2-like activation in the hippocampus. Collectively, our data indicate that increased NOX2 activity after TBI drives M1-like activation that contributes to inflammatory-mediated neurodegeneration, and that inhibiting this pathway provides neuroprotection, in part by altering M1-/M2-like balance towards the M2-like neuroinflammatory response.