Articles: traumatic-brain-injuries.
-
Journal of physiotherapy · Jul 2016
Randomized Controlled Trial Multicenter StudyBallistic strength training compared with usual care for improving mobility following traumatic brain injury: protocol for a randomised, controlled trial.
Traumatic brain injury is the leading cause of disability in young adults aged 15 to 45 years. Mobility limitations are prevalent, and range in severity from interfering with basic day-to-day tasks to restricting participation in higher level social, leisure, employment and sporting activities. Despite the prevalence and severity of physical impairments, such as poor balance and spasticity, the main contributor to mobility limitations following traumatic brain injury is low muscle power generation. Strengthening exercises that are performed quickly are termed 'ballistic' as they are aimed at improving the rate of force production and, hence, muscle power. This is compared with conventional strength training, which is performed slowly and aims to improve maximum force production, yet has limited impact on mobility. ⋯ Strength training in neurological rehabilitation is highly topical because muscle weakness has been identified as the primary impairment leading to mobility limitations in many neurological populations. This project represents the first international study of ballistic strength training after traumatic brain injury. The novelty of ballistic strength training is that the exercises attempt to replicate how lower limb muscles work, by targeting the high angular velocities attained during walking and higher level activities.
-
Journal of neurology · Jul 2016
Traumatic brain injury and age at onset of cognitive impairment in older adults.
There is a deficiency of knowledge regarding how traumatic brain injury (TBI) is associated with age at onset (AAO) of cognitive impairment in older adults. Participants with a TBI history were identified from the Alzheimer's disease neuroimaging initiative (ADNI 1/GO/2) medical history database. Using an analysis of covariance (ANCOVA) model, the AAO was compared between those with and without TBI, and potential confounding factors were controlled. ⋯ Participants with both MCI and mTBI showed an AAO of 66.5 ± 1.3 years (95 % CI 63.9-69.1, n = 45), compared to 70.6 ± 0.3 years for the non-TBI MCI group (95 % CI 70.1-71.1, n = 935) (p = 0.016). As a conclusion, a history of TBI may accelerate the AAO of cognitive impairment by two or more years. These results were consistent with reports of TBI as a significant risk factor for cognitive decline in older adults, and TBI is associated with an earlier AAO found in patients with MCI or AD.
-
Review Meta Analysis
[Outcome in traumatic brain injury : Considered from a neurological viewpoint].
There are many studies on the prognosis and mortality for the acute care of traumatic brain injury (TBI) during the first year. Prediction of the long-term outcome after TBI is more difficult, and can be ascribed to indistinct methods and the necessity of taking into account multiple influencing factors. ⋯ Environmental factors are most predictive of long-term TBI outcome. The awareness of the interaction of all these factors requires a individualized long-term rehabilitation.
-
Pediatr Crit Care Me · Jul 2016
Multicenter StudyVariation in Anticonvulsant Selection and Electroencephalographic Monitoring Following Severe Traumatic Brain Injury in Children-Understanding Resource Availability in Sites Participating in a Comparative Effectiveness Study.
Early posttraumatic seizures may contribute to worsened outcomes after traumatic brain injury. Evidence to guide the evaluation and management of early posttraumatic seizures in children is limited. We undertook a survey of current practices of continuous electroencephalographic monitoring, seizure prophylaxis, and the management of early posttraumatic seizures to provide essential information for trial design and the development of posttraumatic seizure management pathways. ⋯ This study reports the current management practices for early posttraumatic seizures in select academic centers after pediatric severe traumatic brain injury. The substantial variation in continuous electroencephalographic monitoring implementation, choice of seizure prophylaxis medications, and management of early posttraumatic seizures across institutions was reported, signifying the areas of clinical uncertainty that will help provide focused design of clinical trials. Although sites with treatment protocols reported a decreased number of medications for the scenarios described, completion of the Approaches and Decisions in Acute Pediatric TBI trial will be able to determine if these protocols lead to decreased variability in medication administration in children at the clinical sites.