Articles: neuropathic-pain.
-
Vortioxetine is a multimodal antidepressant that potently antagonizes 5-HT3 serotonin receptors, inhibits the high-affinity serotonin transporter, activates 5-HT1A and 5-HT1B receptors, and antagonizes 5-HT1D and 5-HT7 receptors. 5-HT3 receptors largely mediate the hyperalgesic activity of serotonin that occurs in response to nerve injury. Activation of 5-HT3 receptors contributes to explain why selective serotonin reuptake inhibitors, such as fluoxetine, are not indicated in the treatment of neuropathic pain. Here, we studied the analgesic action of vortioxetine in the chronic constriction injury model of neuropathic pain in mice. ⋯ Vortioxetine enhanced mechanical pain thresholds in chronic constriction injury mice without changing motor activity, as assessed by the open-field and horizontal bar tests. None of the three antidepressants caused analgesia in the complete Freund's adjuvant model of chronic inflammatory pain. These findings raise the attractive possibility that vortioxetine can be effective in the treatment of neuropathic pain, particularly in patients with comorbid depression and cognitive dysfunction.
-
Multicenter Study
Development and validation of a Taiwan version of the ID Pain questionnaire (ID Pain-T).
Neuropathic pain (NeP) is distinct from nociceptive pain and has different underlying mechanisms requiring specific treatment strategies. To aid diagnosis, self-administered screening questionnaires (such as ID Pain) have been developed to help physicians identify patients with NeP. The aim of this study was to develop and validate a translated ID Pain questionnaire for Taiwanese subjects (ID Pain-T). ⋯ This study provides evidence that the ID Pain-T questionnaire is a valid and reliable self-administered screening tool to identify NeP in Taiwanese patients.
-
Bortezomib is a mainstay of therapy for multiple myeloma, frequently complicated by painful neuropathy. The objective of this study was to describe clinical, electrophysiological, and pathological changes of bortezomib-induced peripheral neuropathy (BiPN) in detail and to correlate pathological changes with pain descriptors. Clinical data, nerve conduction studies, and lower leg skin biopsies were collected from 22 BiPN patients. ⋯ Finally, significant correlations between UDNFD of PGP9.5 versus the evaluative Pain Rating Index (PRI) and number of words count (NWC) of the MPQ, and significant inverse correlations between SENFD/UDNFD of CGRP versus the sensory-discriminative MPQ PRI/NWC were found. BiPN is a sensory neuropathy, in which neuropathic pain is the most striking clinical finding. Bortezomib-induced neuropathic pain may be driven by sprouting of parasympathetic fibers in the upper dermis and impaired regeneration of CGRP fibers in the subepidermal layer.
-
Current drug metabolism · Jan 2018
ReviewRole of Mitochondrial Mechanism in Chemotherapy-Induced Peripheral Neuropathy.
Even though chemotherapeutic regimens show considerable importance, it may cause progressive, continuing and sometimes irreversible peripheral neuropathy. Chemotherapy induced peripheral neuropathy (CIPN) is comprised of sensory abnormalities that are most distressing issues. The mechanism associated with CIPN pathogenesis is not completely revealed and its treatment is still questionable. The purpose of this review was to investigate the role of mitochondria in CIPN. ⋯ The pathophysiology of CIPN is complicated as chemotherapeutic medications often involve combination of drugs. With these combinatorial therapies cancer survivors develop continuing effects of CIPN which require rehabilitation strategies for the recovery of patient's condition and quality of life.
-
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. ⋯ In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.