Articles: neuropathic-pain.
-
Patients with thoracic neuropathic pain often do not respond to medication and physical therapy. Coblation technology has been demonstrated to have potential for pain management. ⋯ Percutaneous thoracic paravertebral nerve coblation guided by computed tomography is a potential method for the treatment of thoracic neuropathic pain.
-
St. John's Wort Potentiates anti-Nociceptive Effects of Morphine in Mice Models of Neuropathic Pain.
In this study, we compared the efficacy of a combination of PKC-blocker St. John's Wort (SJW) and morphine in mice with painful antiretroviral (2,3-dideoxycitidine [ddC]) and chemotherapic (oxaliplatin) neuropathy. ⋯ These results show that SJW has notable antinociceptive activity for both neuropathic pain models and could be used in neuropathic pain relief alone or in combination with morphine. These data support the utility of combination SJW/opioid therapy in pain management for antinociceptive efficacy by enhancing opioid analgesia.
-
Experimental neurology · Jul 2017
Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide.
Vasoactive intestinal peptide (VIP) is one of the neuropeptides showing the strongest up-regulation in the nociceptive pathway after peripheral nerve injury and has been proposed to support neuropathic pain. Nevertheless, the story may be more complicated considering the known suppressive effects of the peptide on the immune reactivity of microglial cells, which have been heavily implicated in the onset and maintenance of pain after nerve injury. We here used mice deficient in VIP and the model of spared nerve injury, characterized by persistent tactile hypersensitivity. ⋯ The latter was also observed at four weeks after spared nerve injury, a time at which bilateral tactile hypersensitivity persisted in VIP-deficient mice. These data suggest an action of VIP in neuropathic states that is more complicated than previously assumed. Future research is now needed for a deeper understanding of the relative contribution of receptors and fiber populations involved in the VIP-neuropathic pain link.
-
A bifunctional peptide containing an opioid and nociceptin receptor-binding pharmacophore, H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2 (KGNOP1), was tested for its analgesic properties when administered intrathecally in naïve and chronic constriction injury (CCI)-exposed rats with neuropathy-like symptoms. KGNOP1 significantly increased the acute pain threshold, as measured by the tail-flick test, and also increased the threshold of a painful reaction to mechanical and thermal stimuli in CCI-exposed rats. Both of the effects could be blocked by pre-administration of [Nphe1]-Nociceptin (1-13)-NH2 (NPhe) or naloxone, antagonists for nociceptin and opioid receptors, respectively. ⋯ Repeated daily intrathecal injections of KGNOP1 led to the development of analgesic tolerance, with the antiallodynic action being completely abolished on day 6. Nevertheless, the development of tolerance to the antihyperalgesic effect was delayed in comparison to morphine, which lost its efficacy as measured by the cold plate test after 3days of daily intrathecal administration, whereas KGNOP1 was efficient up to day 6. A single intrathecal injection of morphine to KGNOP1-tolerant rats did not raise the pain threshold in any of the behavioural tests; in contrast, a single intrathecal dose of KGNOP1 significantly suppressed allodynia and hyperalgesia in morphine-tolerant rats.
-
Striatal-enriched phosphatase 61 (STEP61) is a member of intracellular protein tyrosine phosphatases, which is involved in the regulation of synaptic plasticity and a line of neuropsychiatric disorders. This protein tyrosine phosphatase is also abundant in pain-related spinal cord dorsal horn neurons. However, whether and how this tyrosine phosphatase modulates the nociceptive plasticity and behavioral hypersensitivity remain largely unknown. ⋯ To reinstate STEP61 activity, we overexpressed wild-type STEP61 [STEP61(WT)] in spinal dorsal horn, finding that STEP61(WT) completely blunted LTP induction. Behavioral tests showed that LTP blockade by STEP61(WT) correlated with a long-lasting alleviation of thermal hypersensitivity and mechanical allodynia induced by chronic constriction injury of sciatic nerves. These data implicated that STEP61 exerted a negative control over spinal nociceptive plasticity, which might have therapeutic benefit in pathological pain.