Articles: neuropathic-pain.
-
The efficacy of opioids in patients with chronic neuropathic pain remains controversial. Although activation of δ-opioid receptors (DORs) in the brainstem reduces inflammation-induced persistent hyperalgesia, it is not effective under persistent neuropathic pain conditions and these clinical problems remain largely unknown. In this study, by using a chronic constriction injury (CCI) of the sciatic nerve in rats, we found that in the brainstem nucleus raphe magnus (NRM), DORs emerged on the surface membrane of central synaptic terminals on day 3 after CCI surgery and disappeared on day 14. ⋯ NGF was infused into the NRM or incubated CCI rat slices drove DORs to the surface membrane of synaptic terminals. Taken together, epigenetic upregulation of NGF activity by HDAC inhibitors in the NRM promotes the trafficking of DORs to pain-modulating neuronal synapses under neuropathic pain conditions, leading to δ-opioid analgesia. These findings indicate that therapeutic use of DOR agonists combined with HDAC inhibitors might be effective in chronic neuropathic pain managements.
-
The mechanism underlying neuropathic pain (NP) is complex and has not been fully elucidated. The TWIK-related spinal cord K+ (TRESK) is the major background potassium current in dorsal root ganglia (DRG), we found that mitogen-activated protein kinase (MAPK) signal pathway were activated in spinal cord accompanied by TRESK down regulation in response to NP. Therefore, we investigated whether TRESK mediates inflammation and apoptosis by MAPK pathway in the spinal cord of NP rats. ⋯ Phosphorylated ERK and p38 were increased in the spinal cord. Intrathecal injection of an ERK antagonist (PD98059) and p38 antagonist (SB203580) prevented ERK and p38 activation in the spinal cord and mechanical allodynia induced by TRESK shRNA lentivirus. In conclusion, our study clearly demonstrated an important role for TRESK in NP and that TRESK regulation contributes to pain sensitivity mediates inflammation and apoptosis by ERK and p38 MAPK signaling in the spinal cord.
-
Bmc Complem Altern M · Dec 2016
Activation of hippocampal MEK1 contributes to the cumulative antinociceptive effect of electroacupuncture in neuropathic pain rats.
Electroacupuncture (EA) intervention can relieve a variety of pain; however, optimal EA protocols have not been clearly determined. In addition, although central mitogen-activated protein kinase kinase (MEK) signaling has been shown to be involved in the antinociceptive effect of acupuncture stimulation, its characteristics at different time-points of EA intervention have not been fully elucidated. Therefore, the present study investigated the relationship between the effects of different numbers of EA intervention sessions and the activation of MEK1 in the hippocampus and hypothalamus in a rat model of neuropathic pain. ⋯ EA intervention can induce time-dependent cumulative analgesia in neuropathic pain rats after 4 successive sessions of daily EA intervention, which is at least in part related to the activation of hippocampal MEK1.
-
Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. ⋯ Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptations resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL.
-
The main focus for the development of adenosine targets as analgesics to date has been A1Rs due to its antinociceptive profile in various preclinical pain models. The usefulness of systemic A1R agonists may be limited by other effects (cardiovascular, motor), but enhanced selectivity for pain might occur with partial agonists, potent and highly selective agonists, or allosteric modulators. A2AR agonists exhibit some peripheral pronociceptive effects, but also act on immune cells to suppress inflammation and on spinal glia to suppress pain signaling and may be useful for inflammatory and neuropathic pain. ⋯ Endogenous adenosine contributes to antinociception by several pharmacological agents, herbal remedies, acupuncture, transcutaneous electrical nerve stimulation, exercise, joint mobilization, and water immersion via spinal and/or peripheral effects, such that this system appears to constitute a major pain regulatory system. Finally, caffeine inhibits A1-, A2A- and A3Rs with similar potency, and dietary caffeine intake will need attention in trials of: (a) agonists and/or modulators acting at these receptors, (b) some pharmacological and herbal analgesics, and (c) manipulations that enhance endogenous adenosine levels, all of which are inhibited by caffeine and/or A1R antagonists in preclinical studies. All adenosine receptors have effects on spinal glial cells in regulating nociception, and gender differences in the involvement of such cells in chronic neuropathic pain indicate gender may also need attention in preclinical and human trials evaluating the efficacy of adenosine-based analgesics.