Articles: neuropathic-pain.
-
This study explored surface brain morphometry in type 1 diabetes including focus on painful diabetic peripheral neuropathy (DPN). Brain MRI was obtained from 56 individuals with diabetes (18 without DPN, 19 with painless DPN, 19 with painful DPN) and 20 healthy controls. Cortical thickness, sulcus depth, and gyrification were analysed globally and regionally in each group and in the combined diabetes group. ⋯ Cortical thinning manifested across the brain cortex in diabetes, especially for painful DPN. Altered postcentral gyrus morphometry may be associated with neuropathic pain. Assessing cortical morphometry may be critical for comprehending central neuropathy and the manifestation of painful DPN in diabetes.
-
The main objective of this review is to demonstrate the use of Peripheral Percutaneous Electrical Nerve Stimulation (PENS), together with its most up-to-date protocols, for the treatment of neuropathies. ⋯ PENS requires nurse education on electrode/needle placement and patient instruction, with documentation of key parameters. This review emphasizes the need for further research to establish standardized protocols and optimal application parameters for different neuropathic pain conditions.
-
Transient receptor potential ankyrin 1 (TRPA1) is implicated in physiological and pathological nociceptive signaling, but the clinical benefit of TRPA1 antagonists in chronic pain is not clearly demonstrated. LY3526318 is an oral, potent, and selective novel TRPA1 antagonist. The Chronic Pain Master Protocol was used to evaluate the safety and efficacy of LY3526318 in 3 randomized, placebo-controlled, proof-of-concept studies in knee osteoarthritis pain (OA), chronic low back pain (CLBP), and diabetic peripheral neuropathic pain (DPNP). ⋯ LY3526318 showed a potential drug-induced hepatotoxic effect posing a risk for clinical development. No other safety signals were identified. LY3526318 showed potential for different responses among chronic pain indications and patient subpopulations, highlighting challenges in developing TRPA1 antagonists but supporting their value as a target in managing chronic pain.
-
Dysfunctional hyperactivity of the lateral habenula nucleus (LHb) has emerged as a critical marker for pain-related mood impairments. Acting as a central hub, the LHb filters and disseminates pertinent information to other brain structures during learning. However, it is not well understood how intra-LHb activity is altered during cognitive demand under neuropathic pain conditions. ⋯ Our results showed that the induction of neuropathic pain disrupted WM encoding accuracy and intra-LHb functional neuronal connectivity. This disruption was reversed by optogenetic inhibition of LHb CaMKIIα-expressing neurons, which also produced antinociceptive effects. Together, our findings provide insight into how intra-LHb networks reorganize information to support different task contexts, suggesting that the abnormal pain-related intra-LHb dynamic segregation of information may contribute to poor cognitive accuracy in male rodents during pain experiences.
-
A well-recognized molecular entity involved in pain-related neuroplasticity is the N-methyl-D-aspartate receptor (NMDAR), which is crucial for developing chronic pain. Likewise, the pannexin 1 (Panx1) channel has been described as necessary for initiating and maintaining neuropathic pain, driving nociceptive signals dependent on spinal NMDAR through several possible mechanisms. Through behavioral, pharmacological, and molecular approaches, our study in male rats has revealed several key findings: (1) neurons located in spinal cord laminae I and II express functional Panx1 channels in both neuropathic and sham rats. ⋯ Notably, while 10Panx successfully alleviates hyperalgesia, it does not alter pSrc expression; and (4) NMDA-stimulated YOPRO-1 uptake in neurons of laminae I-II of spinal cord slices were prevented by the NMDAR antagonist D-AP5, the Src inhibitor PP2 (but not PP3), as well as with the 10Panx and carbenoxolone. Therefore, NMDAR activation in dorsal horn neurons triggers an NMDAR-Src-Panx1 signaling pathway, where Panx1 acts as an enhancing effector in neuropathic pain. This implies that disrupting the NMDAR-Panx1 communication (eg, through Src inhibitors and/or Panx1 blockers) may offer a valuable strategy for managing some forms of chronic pain.