Articles: neuropathic-pain.
-
J Pain Palliat Care Pharmacother · Jan 2016
Clinical TrialMinocycline Does Not Decrease Intensity of Neuropathic Pain Intensity, But Does Improve Its Affective Dimension.
Recent understanding of the neuron-glia communication shed light on an important role of microglia to develop neuropathic pain The analgesic effect of minocycline on neuropathic pain is promising but it remains unclear in clinical settings. This study included 20 patients with neuropathic pain of varied etiologies. We administered 100 mg/day of minocycline for 1 week and then 200 mg/day for 3 weeks, as an open-label adjunct to conventional analgesics. ⋯ There was no significant improvement in the scoring of NRS (5.6 ± 1.2 at baseline vs. 5.3 ± 1.9 at 4 weeks; P =.60). The total score of the SF-MPQ decreased significantly (17.2 ± 7.4 vs. 13.9 ± 9.6; P =.02), particularly in the affective subscale (4.4 ± 2.7 vs. 3.3 ± 3.6; P =.007) but not so in the sensory subscale (12.8 ± 5.2 vs. 10.6 ± 6.2; P =.06). We conclude that minocycline failed to decrease pain intensity but succeeded in reducing the affective dimension associated with neuropathic pain.
-
Frontiers in microbiology · Jan 2016
ReviewInteractions of Opioids and HIV Infection in the Pathogenesis of Chronic Pain.
Over 50% of HIV-1/AIDS patients suffer chronic pain. Currently, opioids are the cornerstone medications for treating severe pain in these patients. Ironically, emerging clinical data indicates that repeated use of opiate pain medicines might in fact heighten the chronic pain states in HIV patients. ⋯ In this article, we wish to provide an overview of the potential molecular and cellular mechanisms by which opioids may interact with HIV-1 to cause neurological problems, especially in the context of HIV-associated pathological pain. Elucidating the underlying mechanisms will help researchers and clinicians to understand how chronic use of opioids for analgesia enhances HIV-associated pain. It will also assist in optimizing therapeutic approaches to prevent or minimize this significant side effect of opiate analgesics in pain management for HIV patients.
-
The midbrain ventrolateral periaqueductal gray (VL-PAG) is a key component that mediates pain modulation. Although spinal cord glial cells appear to play an important role in chronic pain development, the precise mechanisms involving descending facilitation pathways from the PAG following nerve injury are poorly understood. This study shows that cellular events that occur during glial activation in the VL-PAG may promote descending facilitation from the PAG during neuropathic pain. ⋯ Western blot analysis showed localized expression of p-p38 in the VL-PAG after CCI. P-p38 was expressed in labeled microglia of the VL-PAG but was not present in astrocytes and neurons on day 7 after CCI. These results demonstrate that CCI-induced neuropathic pain is associated with glial activation in the VL-PAG, which likely participates in descending pain facilitation through the p38 MAPK signaling pathway.
-
PainDETECT (PD-Q) is a patient reported screening questionnaire to identify patients with neuropathic pain based on questions regarding typically sensory symptoms of neuropathic pain. The aim of the present investigation was to assess the test-retest stability of pain descriptors of the PD-Q within a time window of 1-3 weeks. ⋯ The individual PD-Q pain descriptors showed accurate test-retest stability as a prerequisite for use in repeated measurements (e. g. post baseline or follow up data) in clinical trials.
-
Recent studies reported the translocator protein (TSPO) to play critical roles in several kinds of neurological diseases including the inflammatory and neuropathic pain. However, the precise mechanism remains unclear. This study was undertaken to explore the distribution and possible mechanism of spinal TSPO against chronic neuropathic pain (CNP) in a rat model of L5 spinal nerve ligation (SNL). ⋯ Ro5-4864 also attenuated the spinal CXCR2 and p-ERK expressions. These results suggested that early upregulation of TSPO could elicit potent analgesic effects against CNP, which might be partly attributed to the inhibition of CXCL1-CXCR2-dependent astrocyte-to-neuron signaling and central sensitization. TSPO signaling pathway may present a novel strategy for the treatment of CNP.