Articles: neuropathic-pain.
-
Etifoxine (etafenoxine, Stresam®) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by GABAAα2 receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to β2 or β3 subunits of the GABAA receptor complex. ⋯ In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates GABAA receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.
-
Frontiers in pharmacology · Jan 2015
ReviewOpioid-induced hyperalgesia in chronic pain patients and the mitigating effects of gabapentin.
Chronic pain patients receiving opioid drugs are at risk for opioid-induced hyperalgesia (OIH), wherein opioid pain medication leads to a paradoxical pain state. OIH involves central sensitization of primary and secondary afferent neurons in the dorsal horn and dorsal root ganglion, similar to neuropathic pain. ⋯ However, few human studies investigating gabapentin use in OIH have been performed in recent years. In this review, we discuss the potential mechanisms that underlie OIH and provide a critical overview of interventional therapeutic strategies, especially the clinically-successful drug gabapentin, which may reduce OIH.
-
In the not-too-distant past, the dorsal root ganglion (DRG) was portrayed as a passive neural structure without involvement in the development or maintenance of chronic neuropathic pain (NP). The DRG was thought of as a structure that merely "supported" physiologic communication between the peripheral nervous system (PNS) and the central nervous system (CNS). Newer scientific information regarding the anatomic and physiologic changes that occur within the DRG as a result of environmental pressures has dispelled this concept and suggests that the DRG is an active participant in the development of NP. This new information, along with new clinical data showing that stimulation of the DRG reduces intensity of pain, suggests that the DRG can be a robust target for neuromodulation therapies. ⋯ The DRG is an active participant in the development of NP. DRG stimulation has multiple effects on the abnormal changes that occur within the DRG as a result of peripheral afferent fiber injury. The sum total of these stimulation effects is to stabilize and decrease hyperexcitability of DRG neurons and thereby decrease NP.
-
Pharmacol. Biochem. Behav. · Jan 2015
Tanshinone IIA attenuates neuropathic pain via inhibiting glial activation and immune response.
Neuropathic pain, characterized by spontaneous pain, hyperalgesia and allodynia, is a devastating neurological disease that seriously affects patients' quality of life. We have previously shown that tanshinone IIA (TIIA), an important lipophilic component of Danshen, had significant anti-nociceptive effect in somatic and visceral pain, it is surprisingly noted that few pharmacological studies have been carried out to explore the possible analgesic action of TIIA on neuropathic pain and the underlying mechanisms. Therefore, in the present study, by using spinal nerve ligation (SNL) pain model, the antinociceptive and antihyperalgesic effects of TIIA on neuropathic pain were evaluated by intraperitoneal administration in rats. The results indicated that TIIA dose-dependently inhibited SNL-induced mechanical hyperalgesia. As revealed by OX42 levels, TIIA effectively repressed the activation of spinal microglial activation in SNL-induced neuropathic pain. Meanwhile, TIIA also decreased the expressions of inflammatory cytokines TNF-α and IL-1β in the spinal cord. Furthermore, TIIA inhibited oxidative stress by significantly rescuing the superoxide dismutase (SOD) activity and decreasing the malondialdehyde (MDA). Moreover, TIIA depressed SNL-induced MAPKs activation in spinal cord. ⋯ Taken together, our study provides evidence that TIIA inhibited SNL-induced neuropathic pain through depressing microglial activation and immune response by the inhibition of mitogen-activated protein kinases (MAPKs) pathways. Our findings suggest that TIIA might be a promising agent in the treatment of neuropathic pain.