Articles: neuropathic-pain.
-
Journal of pain research · Jan 2015
Tapentadol prolonged release for patients with multiple myeloma suffering from moderate-to-severe cancer pain due to bone disease.
Myeloma bone disease (MBD) is a devastating complication of multiple myeloma that leads to severe pain. ⋯ Tapentadol PR started in doses of 100 mg/day was effective and well tolerated in opioid-naïve MBD patients with moderate-to-severe pain. Tapentadol PR can be considered a first-choice opioid in cancer patients suffering from mixed pain with a neuropathic component.
-
Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of OXL is neuropathic pain. In this study, the underlying mechanisms responsible for OXL evoked-neuropathic pain were examined. Using a rat model, the results demonstrated that intraperitoneal (i.p.) injection of OXL significantly increased mechanical pain and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). ⋯ The data shows that TRPA1 expression was upregulated in the lumbar dorsal root ganglion (DRG) of OXL rats and blocking TRPA1 inhibited mechanical pain and heightened cold sensitivity (P < 0.05 vs. control rats). Blocking PAR2 also significantly decreased TRPA1 expression in the DRG. Findings in this study show that OXL intervention amplifies mechanical hyperalgesia and cold hypersensitivity and PAR2 plays an important role in regulating OXL-induced neuropathic pain via TRPA1 pathways.
-
Neurobiology of disease · Jan 2015
BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation.
The pathogenic mechanisms underlying neuropathic pain still remain largely unknown. In this study, we investigated whether spinal BDNF contributes to dorsal horn LTP induction and neuropathic pain development by activation of GluN2B-NMDA receptors via Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) phosphorylation in rats following spinal nerve ligation (SNL). We first demonstrated that spinal BDNF participates in the development of long-lasting hyperexcitability of dorsal horn WDR neurons (i.e. central sensitization) as well as pain allodynia in both intact and SNL rats. ⋯ Finally, we validated that BDNF-evoked SHP2 phosphorylation is required for subsequent GluN2B-NMDA receptors up-regulation and spinal LTP induction, and also for pain allodynia development. Blockade of SHP2 phosphorylation in the spinal dorsal horn using a potent SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of spinal SHP2 by intrathecal delivery of SHP2 siRNA, not only prevents BDNF-mediated GluN2B-NMDA receptors activation as well as spinal LTP induction and pain allodynia elicitation in intact rats, but also reduces the SNL-evoked GluN2B-NMDA receptors up-regulation and spinal LTP occlusion, and ultimately alleviates pain allodynia in neuropathic rats. Taken together, these results suggest that the BDNF/SHP2/GluN2B-NMDA signaling cascade plays a vital role in the development of central sensitization and neuropathic pain after peripheral nerve injury.
-
Although burst spinal cord stimulation (SCS) has been reported to reduce neuropathic pain, no study has explicitly investigated how the different parameters that define burst SCS may modulate its efficacy. The effectiveness of burst SCS to reduce neuronal responses to noxious stimuli by altering stimulation parameters was evaluated in a rat model of cervical radiculopathy. ⋯ Burst SCS can be optimized by adjusting relevant stimulation parameters to modulate the charge delivered to the spinal cord during stimulation. The efficacy of burst SCS is dependent on the charge per burst.
-
Journal of pain research · Jan 2015
Multivariate proteomic analysis of the cerebrospinal fluid of patients with peripheral neuropathic pain and healthy controls - a hypothesis-generating pilot study.
Pain medicine lacks objective biomarkers to guide diagnosis and treatment. Combining two-dimensional gel proteomics with multivariate data analysis by projection, we exploratively analyzed the cerebrospinal fluid of eleven patients with severe peripheral neuropathic pain due to trauma and/or surgery refractory to conventional treatment and eleven healthy controls. Using orthogonal partial least squares discriminant analysis, we identified a panel of 36 proteins highly discriminating between the two groups. ⋯ It has recently been hypothesized that the renin-angiotensin system may play a role in the pathophysiology of neuropathic pain, and a clinical trial of an angiotensin II receptor antagonist was recently published. It is noteworthy that when searching for neuropathic pain biomarkers with a purely explorative methodology, it was indeed a renin-angiotensin system protein that had the highest discriminatory power between patients and controls in the present study. The results from this hypothesis-generating pilot study have to be confirmed in larger, hypothesis-driven studies with age-matched controls, but the present study illustrates the fruitfulness of combining proteomics with multivariate data analysis in hypothesis-generating pain biomarker studies in humans.