Articles: neuropathic-pain.
-
P2X7 receptor antagonists have potential for treating various central nervous system (CNS) diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signalling in pain, and the lack of a corresponding preclinical mechanistic biomarker. ⋯ Sub-optimal translation of preclinical molecules has hindered the clinical development of novel mechanism of action analgesics. We have undertaken a comprehensive in vitro analysis of migroglial signalling mechanisms recruited upon P2X7 receptor activation, a number of which were shown to be modulated by a selective P2X7 receptor antagonist in a well characterized animal model of neuropathic pain. Subject to further confirmation in other neuropathic models, this opens up the possibility to investigate their clinical utility as potential pain biomarkers in patients.
-
Chronic neuropathic pain is a disabling condition that affects quality of life. Despite recommendations and guidelines, treatment remains suboptimal as it often does not result in significant symptom relief. Capsaicin 8% patch has been used for the treatment of several peripheral neuropathic pain etiologies with encouraging results. ⋯ Capsaicin 8% patch is a valuable option for the treatment of peripheral neuropathic pain, providing a significant reduction in pain intensity and painful area. It is well tolerated and has a high treatment compliance.Ethics Committee Reference Number: 16/16//04/2021.
-
Spinal cord stimulation (SCS) is a surgical treatment modality reserved for a subset of patients with neuropathic pain in which conventional pharmacologic treatment has proven insufficient. Previous studies have suggested a possible negative relationship between opioid use at referral and subsequent success of SCS therapy. The aim of this cohort study was to investigate whether preoperative opioid use was associated with inferior SCS outcomes. ⋯ Preoperative opioid usage did not predict the outcome of SCS therapy in a large cohort of patients permanently implanted with an SCS system. The results do not support withholding otherwise well-indicated SCS therapy in patients with chronic neuropathic pain conditions based merely on preoperative opioid usage.
-
The current study aimed to investigate the role and underlying mechanism of Resolvin D1 (RvD1) alleviating spinal nerve ligation (SNL)-induced neuropathic pain (NP) and its interplay with regulatory cascades of Nod-like Receptor Protein 3 (NLRP3) inflammasome. Sprague-Dawley male rat models of SNL-stimulated NP were established, which were pre-treated with different doses of RvD1, WRW4 (ALX/FPR2 inhibitor) or U0126 (ERK inhibitor) for three successive days following the operation. Pain behavior was assessed by measuring changes in the mechanical sensitivity of the hind paws during an observation period of seven consecutive days. ⋯ While these changes were partially reversed by pre-administration of WRW4 and further strengthened by co-treated with U0126. Our results suggest that RvD1 dependent on ALX/FPR2 may have an analgesic and anti-inflammatory influence on SNL-induced NP driven by inhibiting NLRP3 inflammasome via ERK signaling pathway. These data also provide strong support for the recent modulation of neuro-inflammatory priming and highlight the potential for specialized pro-resolving mediators (SPMs) as novel therapeutic avenues for NP.
-
Blood nerve barrier disruption and edema are common in neuropathic pain as well as in complex regional pain syndrome (CRPS). MicroRNAs (miRNA) are epigenetic multitarget switches controlling neuronal and non-neuronal cells in pain. The miR-183 complex attenuates hyperexcitability in nociceptors, but additional non-neuronal effects via transcription factors could contribute as well. ⋯ Cellular stress also compromised the microvascular barrier which was rescued either by miR-183 mimic via FoxO1 repression or by prior silencing of Foxo1. PERSPECTIVE: Low miR-183 leading to barrier impairment via FoxO1 and subsequent claudin-5 suppression is a new aspect in the pathophysiology of CRPS and neuropathic pain. This pathway might help untangle the wide symptomatic range of CRPS and nurture further research into miRNA mimics or FoxO1 inhibitors.