Articles: neuropathic-pain.
-
Neuropathic pain is a type of chronic pain with complex mechanisms, and current treatments have shown limited success in treating patients suffering from chronic pain. Accumulating evidence has shown that the pathogenesis of neuropathic pain is mediated by the plasticity of excitatory neurons in the dorsal horn of the spinal cord, which provides insights into the treatment of hyperalgesia. ⋯ In summary, Shn2 regulates neuropathic pain, promotes the upregulation of GluN2D in glutamatergic neurons and increases the accumulation of GluR1 in excitatory neurons. Taken together, our study provides a new underlying mechanism for the development of neuropathic pain.
-
To compare the effectiveness, safety, and tolerability of add-on nabiximols (NBX) oromucosal spray vs typical oral long-acting opioid (LAO) analgesics in patients with severe (± chronic) peripheral neuropathic back pain poorly responsive to other treatments. ⋯ Within study limitations (e.g., observational design, all potential biases), add-on NBX was superior to and better tolerated than add-on treatment with typical oral LAO analgesics in patients with neuropathic back pain inadequately controlled by recommended/established systemic therapies.
-
Poststroke pain (PSP) is a heterogeneous term encompassing both central neuropathic (ie, central poststroke pain [CPSP]) and nonneuropathic poststroke pain (CNNP) syndromes. Central poststroke pain is classically related to damage in the lateral brainstem, posterior thalamus, and parietoinsular areas, whereas the role of white matter connecting these structures is frequently ignored. In addition, the relationship between stroke topography and CNNP is not completely understood. ⋯ Our exploratory analysis showed that, besides known thalamic and parietoinsular areas, significant voxels carrying a high risk for CPSP were located in the white matter encompassing thalamoinsular connections (one-tailed threshold Z > 3.96, corrected P value <0.05, odds ratio = 39.7). These results show that the interruption of thalamocortical white matter connections is an important component of CPSP, which is in contrast with findings from nonneuropathic PSP and from strokes without pain. These data can aid in the selection of patients at risk to develop CPSP who could be candidates to pre-emptive or therapeutic interventions.
-
Initial clinical studies have shown that the stimulation of the dorsal root ganglion (DRG) can significantly reduce chronic intractable pain. However, clinical data on long-term results and complications of these systems are limited. The aim of this prospective study is to report on a single center long-term follow-up of DRG stimulation for intractable chronic pain. ⋯ The findings were generally robust to imputation methods of missing data. Implantable pulse generators of 8 patients were explanted because of dissatisfaction with pain relief. In conclusion, DRG stimulation can provide effective pain relief and improved quality of life in patients suffering with neuropathic pain, although this study had a revision rate of 42% within the first 24 months, and 56% of IPGs that were replaced because of battery depletion had a shorter than expected battery life.
-
Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of β-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. ⋯ SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. β-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. β-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. β-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that β-elemene might be a promising analgesic for the treatment of chronic pain.