Articles: low-back-pain.
-
Chronic low back pain (cLBP) is a prevalent and multifactorial ailment. No single treatment has been shown to dramatically improve outcomes for all cLBP patients, and current techniques of linking a patient with their most effective treatment lack validation. It has long been recognized that spinal pathology alters motion. ⋯ In response to that need, we have developed a wearable array of nanocomposite stretch sensors that accurately capture the lumbar spinal kinematics, the SPINE Sense System. Data collected from this device are used to identify movement-based phenotypes and analyze correlations between spinal kinematics and patient-reported outcomes. The purpose of this paper is twofold: first, to describe the design and validity of the SPINE Sense System; and second, to describe the protocol and data analysis toward the application of this equipment to enhance understanding of the relationship between spinal movement patterns and patient metrics, which will facilitate the identification of optimal treatment paradigms for cLBP.
-
Evidence-based treatments for chronic low back pain (cLBP) typically work well in only a fraction of patients, and at present there is little guidance regarding what treatment should be used in which patients. Our central hypothesis is that an interventional response phenotyping study can identify individuals with different underlying mechanisms for their pain who thus respond differentially to evidence-based treatments for cLBP. Thus, we will conduct a randomized controlled Sequential, Multiple Assessment, Randomized Trial (SMART) design study in cLBP with the following three aims. ⋯ In Aim 2, we will show that currently available, clinically derived measures, can predict differential responsiveness to the treatments. In Aim 3, a subset of participants will receive deeper phenotyping (n = 160), to identify new experimental measures that predict differential responsiveness to the treatments, as well as to infer mechanisms of action. Deep phenotyping will include functional neuroimaging, quantitative sensory testing, measures of inflammation, and measures of autonomic tone.
-
The Biospecimen Collection and Processing Working Group of the National Institutes of Health (NIH) HEAL Initiative BACPAC Research Program was charged with identifying molecular biomarkers of interest to chronic low back pain (cLBP). Having identified biomarkers of interest, the Working Group worked with the New York University Grossman School of Medicine, Center for Biospecimen Research and Development-funded by the Early Phase Pain Investigation Clinical Network Data Coordinating Center-to harmonize consortium-wide and site-specific efforts for biospecimen collection and analysis. ⋯ The omics data acquisition and analyses derived from the biospecimen include genomics and epigenetics from DNA, proteomics from protein, transcriptomics from RNA, and microbiomics from 16S rRNA. These analyses contribute to the overarching goal of BACPAC to phenotype cLBP and will guide future efforts for precision medicine treatment.
-
Management of patients suffering from low back pain (LBP) is challenging and requires development of diagnostic techniques to identify specific patient subgroups and phenotypes in order to customize treatment and predict clinical outcome. The Back Pain Consortium (BACPAC) Research Program Spine Imaging Working Group has developed standard operating procedures (SOPs) for spinal imaging protocols to be used in all BACPAC studies. These SOPs include procedures to conduct spinal imaging assessments with guidelines for standardizing the collection, reading/grading (using structured reporting with semi-quantitative evaluation using ordinal rating scales), and storage of images. ⋯ While the approach is specific to BACPAC studies, it is general enough to be applied at other centers performing magnetic resonance imaging (MRI) acquisitions in patients with LBP. The herein presented SOPs are meant to improve understanding of pain mechanisms and facilitate patient phenotyping by codifying MRI-based methods that provide standardized, non-invasive assessments of spinal pathologies. Finally, these recommended procedures may facilitate the integration of better harmonized MRI data of the lumbar spine across studies and sites within and outside of BACPAC studies.