Articles: neuralgia.
-
There is a gap between pudendal neuralgia (PN) due to pudendal entrapment syndrome and PN without pudendal entrapment syndrome. The latter could have atypical symptoms. ⋯ Atypical PN in females is low when clinical criteria for pudendal entrapment syndrome are applied.
-
Biotechnol. Appl. Biochem. · Mar 2020
MicroRNA-144 relieves chronic constriction injury-induced neuropathic pain via targeting RASA1.
MicroRNAs (miRNAs) have been shown to participate in development of neuropathic pain. However, the role of microRNA-144 (miR-144) in neuropathic pain remains unclear. In the present study, we established a neuropathic pain mouse model via chronic constriction injury (CCI)-induction. ⋯ Mechanistically, RASA1 (RAS P21 Protein Activator 1) was downregulated following the injection of agomiR-144, and was verified to be a target of miR-144. Furthermore, overexpression of RASA1 reversed the inhibitory effect of miR-144 on neuropathic pain. Therefore, the present study suggested that miR-144 has the potential to be explored as therapeutic target for treatment of neuropathic pain.
-
Curr Pain Headache Rep · Feb 2020
ReviewTranscutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications.
Transcutaneous electrical nerve stimulation (TENS) is widely used as a non-pharmacological approach for pain relief in a variety of clinical conditions. This manuscript aimed to review the basic mechanisms and clinical applications regarding the use of TENS for alleviating the peripheral (PNP) and central neuropathic pain (CNP). ⋯ Basic studies on animal models showed that TENS could alleviate pain by modulating neurotransmitters and receptors in the stimulation site and its upper levels, including the spinal cord, brainstem, and brain. Besides, many clinical studies have investigated the efficacy of TENS in patients with CNP (caused by spinal cord injury, stroke, or multiple sclerosis) and PNP (induced by diabetes, cancer, or herpes zoster). Most clinical trials have demonstrated the efficacy of TENS in attenuating neuropathic pain and suggested that appropriate stimulation parameters (e.g., stimulation frequency and intensity) were critical to improving the analgesic effects of TENS. However, there are some conflicting findings related to the efficacy of TENS in relieving neuropathic pain. With optimized stimulation parameters, TENS would be effective in attenuating neuropathic pain. To obtain sufficient evidence to support the use of TENS in the clinic, researchers recommended performing multicenter clinical trials with optimized TENS protocols for the treatment of various CNP and PNP.
-
Neuroscience letters · Feb 2020
A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals.
Experimental treatments for treating neuropathic pain include transcranial magnetic stimulation (TMS) and invasive electric motor cortex stimulation (iMCS) of the primary motor cortex (M1). Mechanisms of action of both methods, however, remain largely elusive. Within this paper, we focus on animal-based experiments in order to investigate the biological mechanisms that are involved in alleviating pain by use of TMS and/or iMCS. ⋯ Furthermore, structural and functional changes within the thalamus, striatum, periaqueductal grey, rostral ventromedial medulla and dorsal horn were reported to occur. Although widespread, all areas in which structural and functional changes occurred after TMS and iMCS have been found to be interconnected anatomically. This could provide a rationale for future investigations of treating neuropathic pain by use of neuromodulation.