Articles: neuralgia.
-
Neuroscience letters · Jan 2018
Role of KCNQ2 channels in orofacial cold sensitivity: KCNQ2 upregulation in trigeminal ganglion neurons after infraorbital nerve chronic constrictive injury.
Sensitivity to cooling temperatures often becomes heightened in orofacial regions leading to orofacial cold allodynia/hyperalgesia after chronic trigeminal nerve injury. KCNQ2 channels are involved in controlling excitability of primary afferent neurons and thereby regulate sensory functions under both physiological and pathological conditions. In the present study, we sought to determine whether KCNQ2 channels in trigeminal nerves are involved in regulating orofacial operant behavioral responses to cooling stimulation. ⋯ Interestingly, KCNQ2 channel expression becomes significantly upregulated in TG neurons following the ION-CCI. Our results suggest that KCNQ2 channels are involved in regulating orofacial cold sensitivity. Upregulation of KCNQ2 channels may be a compensatory change in attempting to limit injury-induced trigeminal hyperexcitability.
-
Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. ⋯ In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.
-
Pain is a common complication in patients following spinal cord injury (SCI), with studies citing up to 80% of patients reporting some form of pain. Neuropathic pain (NP) makes up a substantial percentage of all pain symptoms in patients with SCI and is often complex. Given the high prevalence of NP in patients with SCI, proper identification and treatment is imperative. ⋯ It is therefore extremely important for clinicians to have a strong foundation in the identification of SCI NP, as well as an understanding of appropriate treatment options. Here, we highlight the definitions and classification tools available for NP identification, and discuss current treatment options. We hope that this will not only provide a better understanding of NP for physicians in various subspecialties, but that it will also help guide future research on this subject.
-
Preclinical investigations have suggested that altered functioning of brainstem pain-modulation circuits may be crucial for the maintenance of some chronic pain conditions. While some human psychophysical studies show that patients with chronic pain display altered pain-modulation efficacy, it remains unknown whether brainstem pain-modulation circuits are altered in individuals with chronic pain. The aim of the present investigation was to determine whether, in humans, chronic pain following nerve injury is associated with altered ongoing functioning of the brainstem descending modulation systems. ⋯ In this study, we report that individuals with orofacial neuropathic pain show altered functional connectivity between regions within the brainstem pain-modulation network. We suggest that these changes reflect largely central mechanisms that feed back onto the primary nociceptive synapse and enhance the transfer of noxious information to higher brain regions, thus contributing to the constant perception of pain. Identifying the mechanisms responsible for the maintenance of neuropathic pain is imperative for the development of more efficacious therapies.
-
Targeting the endocannabinoid system has emerged as an effective strategy for the treatment of inflammatory and neurological diseases. Unlike the inhibition of the principal 2-arachidonyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase (MAGL), which leads to 2-AG overload and cannabinoid receptor desensitization, selective inhibition of the minor 2-AG hydrolytic enzyme alpha, beta-hydrolase domain 6 (ABHD6) can provide therapeutic benefits without producing cannabimimetic side effects. We have shown that inhibition of ABHD6 significantly reduces neuroinflammation and exerts neuroprotection in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 inhibition on neuropathic pain has not been explored. ⋯ This study reveals a novel mechanism for the antinociceptive effect of the 2-AG catabolic enzyme ABHD6 inhibitor WWL70. Understanding the interaction between endocannabinoid and eicosanoid pathways might provide a new avenue for the treatment of inflammatory and neuropathic pain.