Articles: neuralgia.
-
Accumulating evidence has demonstrated that epigenetic modification-mediated changes in pain-related gene expressions play an important role in the development and maintenance of neuropathic pain. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is involved in the development of chronic pain. Moreover, SIRT1 may be a novel therapeutic target for the prevention of type 2 diabetes mellitus (T2DM). ⋯ Concurrently, increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions were reversed by SIRT1 activation. In addition, knockdown of SIRT1 by Ad-SIRT1-shRNA induced pain behaviors and spinal neuronal activation in normal rats, which was accompanied by the increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions. Therefore, we concluded that SIRT1-mediated epigenetic regulation of mGluR1/5 expressions was involved in the development of neuropathic pain in type 2 diabetic rats.
-
Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. ⋯ This increased Ih was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of Ih with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.
-
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. ⋯ In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.
-
We recently demonstrated that brain natriuretic peptide is expressed in the dorsal root ganglia, and that brain natriuretic peptide is required for normal detection of pruritogens. We further showed that the receptor for brain natriuretic peptide, natriuretic peptide receptor A, is present in the spinal cord, and elimination of these neurons profoundly attenuates scratching to itch-inducing compounds. However, the potential modulatory roles of brain natriuretic peptide in nociception, inflammation, and neuropathic mechanisms underlying the sensation of pain have not been investigated in detail. ⋯ These results demonstrate that brain natriuretic peptide is not essential for pain-related behaviors.
-
Background Neuropathic pain is a major pathology of the central nervous system associated with neuroinflammation. Ryk (receptor-like tyrosine kinase) receptors act as repulsive axon-guidance molecules during development of central nervous system and neural injury. Increasing evidence suggests the potential involvement of Wnt/Ryk (wingless and Int) signaling in the pathogenesis of neuropathic pain. ⋯ Further, it also blocked Ca2+-dependent signals including CaMKII and PKCγ, subsequent release of CCL2 (CCR-like protein) in the dorsal horn. An in vitro study showed that inactivating Ryk receptors with anti-Ryk antibodies or lentiviral Ryk shRNA led to the inactivation of Wnt1 for excitatory synaptic transmission in spinal slices and subsequent decrease in CCL2 expression in the dorsal root ganglia neurons. Conclusion These studies demonstrate the existence of critical crosstalk between astrocytes and unmyelinated fibers, which indicate the presynaptic mechanism of Ryk in cytokine transmission of neuropathic pain and the therapeutic potential for Wnt/Ryk signaling pathway in the treatment of neuropathic pain.