Articles: neuralgia.
-
Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. ⋯ In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.
-
Background: Trigeminal postherpetic neuralgia (TPHN) is a severe chronic pain that can lead to various socioeconomic consequences. Therefore, it is necessary to explore optimal treatment options for acute/subacute herpes zoster (HZ)-related trigeminal neuralgia and prevent the further development of TPHN. High-voltage, long-duration pulsed radiofrequency (HL-PRF) of the Gasserian ganglion is a new surgical intervention used to treat PHN. ⋯ The dosage of analgesics and anticonvulsants used in the acute HZ group was lower than that in the subacute group (p < 0.01). All patients did not experience serious adverse reactions. Conclusions: Gasserian ganglion HL-PRF combined with block can be an effective and safe technique to relieve the pain of acute/subacute zoster-related trigeminal neuralgia and prevent the incidence of TPHN.
-
Nerve injury-induced alternations of gene expression in primary sensory neurons of the dorsal root ganglion (DRG) are molecular basis of neuropathic pain genesis. Transcription factors regulate gene expression. In this study, we examined whether early B cell factor 1 (EBF1), a transcription factor, in the DRG, participated in neuropathic pain caused by chronic constriction injury (CCI) of the sciatic nerve. ⋯ CCI decreased the EBF1 binding to the Kcna2 promoter in the ipsilateral L3/4 DRGs. Our findings suggest that DRG EBF1 downregulation contributes to neuropathic pain likely by losing its binding to Kcna2 promoter and subsequently silencing Kv1.2 expression in primary sensory neurons. Exogenous EBF1 administration may mitigate neuropathic pain by rescuing DRG Kv1.2 expression.
-
Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. ⋯ Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
-
Peripheral neuropathic pain (NeP), induced by surgical intervention, is a well-known complication or sequela that remains a clinical challenge with few effective treatments. Ideal animal models that can recapitulate surgery-associated NeP remain to be established for both mechanistic studies and drug discovery. ⋯ We established a new rat model of NeP and thoroughly characterized neuroinflammation in the injured nerve and DRGs. Based on the upregulated genes in DRGs in this model, we screened a promising analgesic (GBP) capable of reducing pain hypersensitivity in surgery-associated NeP.