Articles: hydrogen-sulfide-metabolism.
-
Hydrogen sulfide (H2S) has many beneficial biological properties, including the ability to promote vasodilation. It has been shown to be released from stem cells and increased by hypoxia. Therefore, H2S may be an important paracrine factor in stem cell-mediated intestinal protection. We hypothesized that H2S created through conventional pathways would be a critical component of stem cell-mediated intestinal protection after ischemic injury. ⋯ Knocking down conventional H2S-producing enzymes only impacted gas production in normoxic conditions. When cells were transfected in hypoxic conditions, as would be expected in the ischemic intestines, H2S gas was not depressed. These data, along with unchanged perfusion and histological injury parameters with conventional enzyme knockdown, would indicate that alternative H2S production pathways may be initiated during hypoxic and/or ischemic events.
-
Biochem. Biophys. Res. Commun. · Jan 2020
Sulfhydration of perilipin 1 is involved in the inhibitory effects of cystathionine gamma lyase/hydrogen sulfide on adipocyte lipolysis.
Hydrogen sulfide (H2S) is a novel adipokine mediating glucose uptake, lipid storage and mobilization, thus contributing to the genesis of obesity and associated diseases. Our previous work demonstrated that H2S inhibited isoproterenol-stimulated lipolysis by reducing the phosphorylation of perilipin 1 (plin-1), a lipid-droplet protein blocking lipase access. How H2S modulates plin-1 phosphorylation is still unclear. ⋯ Finally, plin-1 knockout abolished the effect of H2S on lipolysis, which indicates that plin-1 sulfhydration is a major direct target of H2S in lipolysis. We have identified a new post-translation modification, sulfhydration (direct action by H2S) of plin-1, causing reduced phosphorylation then decreased lipolysis. This finding also highlights a novel molecular regulatory mechanism of lipolysis.
-
Chinese medical journal · Dec 2019
ReviewInvolvement of hydrogen sulfide in the progression of renal fibrosis.
Renal fibrosis is the most common manifestation of chronic kidney disease (CKD). Noting that existing treatments of renal fibrosis only slow disease progression but do not cure it, there is an urgent need to identify novel therapies. Hydrogen sulfide (H2S) is a newly discovered endogenous small gas signaling molecule exerting a wide range of biologic actions in our body. This review illustrates recent experimental findings on the mechanisms underlying the therapeutic effects of H2S against renal fibrosis and highlights its potential in future clinical application. ⋯ We postulate that H2S may delay the occurrence and progress of renal fibrosis, thus protecting renal function. Further experiments are required to explore the precise role of H2S in renal fibrosis and its application in clinical treatment.
-
The goal of this study was to evaluate the effect of hydrogen sulphide on inflammatory factors and the energy metabolism of mitochondria after limb reperfusion injury in rats. Sixty Wistar rats were divided into three groups: the sham operated group, the control group (the ischaemia-reperfusion injury [IRI] + normal saline group), and the experimental group (the IRI + H2 S group). An experimental rat model of limb IRI was established. ⋯ The content of ATP in mitochondria of skeletal muscle cells of ischaemia-reperfusion rats in the control group was significantly lower than that in the sham operated group (P < 0.05), while the content of ATP of mitochondria in the experimental group after H2 S treatment was significantly higher than the control group (P < 0.05). Hydrogen sulphide can alleviate the injury of skeletal muscle and distal organs after limb ischaemia-reperfusion and reduce local inflammatory reaction, which is essential in alleviating mitochondrial transmembrane potential and energy metabolism disorder during reperfusion injury. The purpose of the study is to summarise the available information and provide theoretical support for the application of hydrogen sulphide in the treatment of limb IRI in skeletal muscle and distal organs.
-
Infection and immunity · Jan 2019
H2S, a Bacterial Defense Mechanism against the Host Immune Response.
The biological mediator hydrogen sulfide (H2S) is produced by bacteria and has been shown to be cytoprotective against oxidative stress and to increase the sensitivity of various bacteria to a range of antibiotic drugs. Here we evaluated whether bacterial H2S provides resistance against the immune response, using two bacterial species that are common sources of nosocomial infections, Escherichia coli and Staphylococcus aureus Elevations in H2S levels increased the resistance of both species to immune-mediated killing. ⋯ We found that inhibition of bacterial H2S production can increase the susceptibility of both bacterial species to rapid killing by immune cells and can improve bacterial clearance after severe burn, an injury that increases susceptibility to opportunistic infections. These findings support the role of H2S as a bacterial defense mechanism against the host response and implicate bacterial H2S inhibition as a potential therapeutic intervention in the prevention or treatment of infections.