Articles: hyperalgesia.
-
Activation of calcitonin gene-related peptide (CGRP)-positive sensory neurons in the tumor microenvironment has been shown to be involved in tumor growth. However, how CGRP-positive sensory neurons are activated requires elucidation. In this study, we focused on transient receptor potential vanilloid 1 (TRPV1) and examined the contribution of TRPV1 to tumor growth and cancer pain in a mouse cancer model in which Lewis lung carcinoma was subcutaneously inoculated in the left plantar region. ⋯ Cancer pain in TRPV1 knockout mice was significantly lower than that in WT mice. In conclusion, TRPV1 is involved in both tumor growth and cancer pain, potentially leading to a novel strategy for the treatment of cancer pain and cancer development. Cancer pain is also suggested to facilitate tumor growth.
-
Randomized Controlled Trial
Placebo analgesia and nocebo hyperalgesia in patients with Alzheimer disease and healthy participants.
The role of placebo analgesia and nocebo hyperalgesia in patients with Alzheimer disease (AD) is largely unknown, with only few studies in the area. Therefore, this study aims to investigate to which extent placebo analgesia and nocebo hyperalgesia effects are present in patients experiencing mild-to-moderate AD. Twenty-one patients with AD (test population) and 26 healthy participants (HP; design validation) were exposed to thermal pain stimulation on 3 test days: Lidocaine condition (open/hidden lidocaine administration), capsaicin condition (open/hidden capsaicin administration), and natural history (no treatment), in a randomized, within-subject design. ⋯ With a well-controlled experimental setting, this study suggests that patients with AD may not experience placebo analgesia effects. Nocebo hyperalgesia effects in patients with AD needs further research. These findings may have implications for the conduction of clinical trials and the treatment of patients with AD in clinical practice.
-
Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. ⋯ However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
-
Pain is the most common symptom experienced by patients with sickle cell disease (SCD) throughout their lives and is the main cause of hospitalization. Despite the progress that has been made towards understanding the disease pathophysiology, major gaps remain in the knowledge of SCD pain, the transition to chronic pain, and effective pain management. Recent evidence has demonstrated a vital role of gut microbiota in pathophysiological features of SCD. ⋯ Fecal material transplantation from mice with SCD to wild-type mice resulted in tactile allodynia (0.95 ± 0.17 g vs 0.08 ± 0.02 g, von Frey test, P < 0.001), heat hyperalgesia (15.10 ± 0.79 seconds vs 8.68 ± 1.17 seconds, radiant heat, P < 0.01), cold allodynia (2.75 ± 0.26 seconds vs 1.68 ± 0.08 seconds, dry ice test, P < 0.01), and anxiety-like behaviors (Elevated Plus Maze Test, Open Field Test). On the contrary, reshaping gut microbiota of mice with SCD with FMT from WT mice resulted in reduced tactile allodynia (0.05 ± 0.01 g vs 0.25 ± 0.03 g, P < 0.001), heat hyperalgesia (5.89 ± 0.67 seconds vs 12.25 ± 0.76 seconds, P < 0.001), and anxiety-like behaviors. These findings provide insights into the relationship between gut microbiota dysbiosis and pain in SCD, highlighting the importance of gut microbial communities that may serve as potential targets for novel pain interventions.