Articles: hyperalgesia.
-
Background Diabetic gastropathy is a complex neuromuscular dysfunction of the stomach that commonly occurs in diabetes mellitus. Diabetic patients often present with upper gastrointestinal symptoms, such as epigastric discomfort or pain. The aim of this study was to assess gastric sensation in streptozocin-induced diabetes mellitus (DM) rats and to determine the contribution of C-C motif chemokine receptor 2 (CCR2) signaling to gastric hyperalgesia. ⋯ Intense gastric hyperalgesia also developed in DM rats at two weeks after streptozocin administration, which was significantly reduced after intrathecal administration of the CCR2 antagonist INCB3344. Immunochemical analysis indicated that CCR2 expression was substantially upregulated in small and medium-sized dorsal root ganglia neurons of DM rats, although the protein level of monocyte chemoattractant protein-1, the preferred ligand for CCR2, was not significantly different between the control and DM groups. Conclusions These data suggest that CCR2 activation in nociceptive dorsal root ganglia neurons plays a role in the pathogenesis of gastric hyperalgesia associated with diabetic gastropathy and that CCR2 antagonist may be a promising treatment for therapeutic intervention.
-
Transcription factors are proteins that modulate the transcriptional rate of target genes in the nucleus in response to extracellular or cytoplasmic signals. Activating transcription factors 2 (ATF2) and 3 (ATF3) respond to environmental signals and maintain cellular homeostasis. There is evidence that inflammation and nerve injury modulate ATF2 and ATF3 expression. ⋯ ATF2 immunoreactivity was found in dorsal root ganglia and spinal cord co-labeling with NeuN mainly in non-peptidergic (IB4+) but also in peptidergic (CGRP+) neurons. ATF2 was found mainly in small- and medium-sized neurons. These results suggest that ATF2, but not ATF3, is found in strategic sites related to spinal nociceptive processing and participates in the maintenance of neuropathic pain in rats.
-
Objective Previous studies of neuropathic pain have suggested that the P2X4 purinoceptor (P2X4R) in spinal microglia is essential for maintaining allodynia following nerve injury. However, little is known about its role in inflammatory soup-induced trigeminal allodynia, which closely mimics chronic migraine status. Here, we determined the contributions of P2X4R and related signaling pathways in an inflammatory soup-induced trigeminal allodynia model. ⋯ Double immunostaining indicated that p38 and brain-derived neurotrophic factor were mainly expressed in microglial cells, whereas excitatory amino acid transporter 3 was primarily expressed in trigeminal nucleus caudalis neurons. Conclusions These data indicate that microglial P2X4R is involved in the regulation of excitatory amino acid transporter 3 via brain-derived neurotrophic factor-tyrosine receptor kinase B signaling following repeated inflammatory dural stimulation. Microglial P2X4R activation and microglia-neuron interactions in the trigeminal nucleus caudalis may play a role in the pathogenesis of migraine chronicity, and the modulation of P2X4R activation might be a potential therapeutic strategy.
-
Diabetic peripheral neuropathy is a major debilitating late complication of diabetes, which significantly reduces the quality of life in patients. Diabetic peripheral neuropathy is associated with a wide spectrum of sensory abnormalities, where in loss of sensation or hypoalgesia to applied external stimuli is paradoxically accompanied by debilitating tonic spontaneous pain. In numerous studies on animal models of diabetic peripheral neuropathy, behavioural measurements have been largely confined to analysis of evoked withdrawal to mechanical and thermal stimuli applied to dermatomes, whereas spontaneous, on-going pain has not been widely studied. ⋯ Neither early hypersensitivity nor late hypoalgesia were associated with markers of cellular stress in the dorsal root ganglia. Whereas significant neutrophil infiltration was observed in the dorsal root ganglia over both early and late stages post-Streptozotocin, T-cell infiltration in the dorsal root ganglia was prominent at late stages post-Streptozotocin. Thus, longitudinal analyses reveal that similar to patients with chronic diabetic peripheral neuropathy, mice show tonic pain despite sensory loss after several months in the Streptozotocin model, which is accompanied by neuroimmune interactions in the dorsal root ganglia.
-
Various spinal cord stimulation (SCS) modes are used in the treatment of chronic neuropathic pain disorders. Conventional (Con) and Burst-SCS are hypothesized to exert analgesic effects through different stimulation-induced mechanisms. Preclinical electrophysiological findings suggest that stimulation intensity is correlated with the effectiveness of Burst-SCS. Therefore, we aimed to investigate the relation between amplitude (charge per second) and behavioral effects in a rat model of chronic neuropathic pain, for both Conventional Spinal Cord Stimulation (Con-SCS) and biphasic Burst-SCS. ⋯ Biphasic Burst-SCS requires significantly more mean charge per second in order to achieve similar pain relief, as compared with Con-SCS, in an experimental model of chronic neuropathic pain.