Articles: hyperalgesia.
-
Following tissue injury, phosphorylation of p38 MAPK in the primary afferent neurons drives sensitization of peripheral nerve. Dexmedetomidine extends the duration of reginal analgesia by local anesthetics. The effect of regional analgesia on the peripheral nerve sensitization is not known. ⋯ Levobupivacaine without dexmedetomidine could not inhibit p38 MAPK phosphorylation in the DRG completely. However, Levobupivacaine and dexmedetomidine completely inhibited p38 MAPK phosphorylation, and reduced macrophage accumulation and TNF-α amount in the plantar tissue. Inhibition of p38 MAPK phosphorylation via TNF-α suggests dexmedetomidine has a peripheral mechanism of anti-inflammatory action when used asan adjunct to local anesthetics, and provides a molecular basis for the prevention of peripheral sensitization following surgery.
-
Upon systemic administration in rats, the prodrug L-4-chlorokynurenine (4-Cl-KYN; AV-101; VistaGen Therapeutics, Inc, South San Francisco, CA) is rapidly absorbed, actively transported across the blood-brain barrier, and converted in astrocytes to 7-chlorokynurenic acid (7-Cl-KYNA), a potent and specific antagonist of the glycine B coagonist site of the N-methyl-D-aspartate (NMDA) receptor. We examined the effects of 4-Cl-KYN in several rat models of hyperalgesia and allodynia and determined the concentrations of 4-Cl-KYN and newly produced 7-Cl-KYNA in serum, brain, and spinal cord. ⋯ Our conclusions show that after systemic delivery, the highest 2 doses (167 and 500 mg/kg) of 4-Cl-KYN yielded brain concentrations of 7-Cl-KYNA exceeding its half maximal inhibitory concentration (IC50) at the glycine B site and resulted in dose-dependent antihyperalgesia in the 4 models of facilitated processing associated with tissue inflammation and nerve injury. On the basis of the relative dose requirements for analgesic actions and side effect profiles from these experiments, 4-Cl-KYN is predicted to have antihyperalgesic efficacy and a therapeutic ratio equal to gabapentin and superior to MK-801.
-
Eur. J. Clin. Pharmacol. · Oct 2017
ReviewChallenges in translational drug research in neuropathic and inflammatory pain: the prerequisites for a new paradigm.
Despite an improved understanding of the molecular mechanisms of nociception, existing analgesic drugs remain limited in terms of efficacy in chronic conditions, such as neuropathic pain. Here, we explore the underlying pathophysiological mechanisms of neuropathic and inflammatory pain and discuss the prerequisites and opportunities to reduce attrition and high-failure rate in the development of analgesic drugs. ⋯ A different paradigm is required for the identification of relevant targets and candidate molecules whereby pain is coupled to the cause of sensorial signal processing dysfunction rather than clinical symptoms. Biomarkers which enable the characterisation of drug binding and target activity are needed for a more robust dose rationale in early clinical development. Such an approach may be facilitated by quantitative clinical pharmacology and evolving technologies in brain imaging, allowing accurate assessment of target engagement, and prediction of treatment effects before embarking on large clinical trials.
-
Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective. β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. ⋯ Spinal cord immunohistochemistry revealed that preventive treatment with BCP reduced p38 MAPK and NF-κB activation, as well as the increased Iba-1 and IL-1β immunoreactivity promoted by PTX. Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.
-
Randomized Controlled Trial
Low-dose buprenorphine infusion to prevent postoperative hyperalgesia in patients undergoing major lung surgery and remifentanil infusion: a double-blind, randomized, active-controlled trial.
Postoperative secondary hyperalgesia arises from central sensitization due to pain pathways facilitation and/or acute opioid exposure. The latter is also known as opioid-induced hyperalgesia (OIH). Remifentanil, a potent μ-opioid agonist, reportedly induces postoperative hyperalgesia and increases postoperative pain scores and opioid consumption. The pathophysiology underlying secondary hyperalgesia involves N-methyl-D-aspartate (NMDA)-mediated pain pathways. In this study, we investigated whether perioperatively infusing low-dose buprenorphine, an opioid with anti-NMDA activity, in patients receiving remifentanil infusion prevents postoperative secondary hyperalgesia. ⋯ Low-dose buprenorphine infusion prevents the development of secondary hyperalgesia around the surgical incision but shows no long-term efficacy at three months follow-up.