Articles: hyperalgesia.
-
Pulsed radiofrequency (PRF) treatment offers pain relief for patients suffering from chronic pain who do not respond well to conventional treatments. We tested whether PRF treatment attenuated complete Freund's adjuvant (CFA)-induced inflammatory pain. Epigenetic modification of potassium-chloride cotransporter 2 (KCC2) gene expression was examined to elucidate the potential contributing mechanism. ⋯ These findings suggest that PRF might be an alternative therapy for inflammatory pain. One of the underlying mechanisms is through modification of KCC2, which is an important determinant for the efficacy of inhibitory neurotransmission in the spinal cord, and its expression levels are regulated by histone acetylation epigenetically following inflammation.
-
Systemic gabapentin is a mainstay treatment for neuropathic pain though there are side-effects. Localized therapy may curtail such side-effects so a topical gabapentin dermal application was examined in the chronic constriction injury (CCI) model of neuropathic pain. ⋯ Systemic gabapentin neuropathic pain management carries side-effects ostensibly preventable by localized therapy. This study validates the effectiveness potential of a topical gabapentin gel against an extensive range of nociceptive stimulus modalities utilizing the chronic constriction injury-induced neuropathic pain model.
-
To compare pressure pain threshold (PPT) around the knee (local hyperalgesia) and at a site remote to the knee (widespread hyperalgesia) between female runners with and without patellofemoral pain (PFP); and to evaluate the relationship between running volume, self-reported knee function and PPT measures. ⋯ Lower PPTs locally and remote to the knee in female runners with PFP indicate the presence of local and widespread hyperalgesia. Additionally, this hyperalgesia, which is related to self-reported knee function, appears to be increased by greater running volumes. Development and evaluation of non-mechanical interventions for the management of running-related PFP in females may be needed to address this apparent hyperalgesia.
-
Neuropathic pain is a major unmet medical need, with only 30% to 35% of patients responding to the current standard of care. The discovery and development of novel therapeutics to address this unmet need have been hampered by poor target engagement, the selectivity of novel molecules, and limited access to the relevant compartments. Biological therapeutics, either monoclonal antibodies (mAbs) or peptides, offer a solution to the challenge of specificity as the intrinsic selectivity of these kinds of molecules is significantly higher than traditional medicinal chemistry-derived approaches. ⋯ In this study, we describe a novel construct exemplifying an engineered solution to overcome these challenges. We have generated a novel anti-transferrin receptor-interleukin-1 receptor antagonist fusion that transports to the central nervous system and delivers efficacy in a model of nerve ligation-induced hypersensitivity. Approaches such as these provide promise for novel and selective analgesics that target the central compartment.
-
Persistent peripheral sensitization contributes to chronic pain. Plasticity of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) induced by pro-inflammatory mediators contributes to sensitization. Prostaglandin E2 (PGE2) enriched in injured tissues is known not only directly to sensitize DRG neurons, but also to potentiate sensitizing effects of other pain mediators such as capsaicin and its receptor transient receptor potential vanilloid-1 (TRPV1). It remains unknown whether PGE2 potentiates TRPV1 activity by stimulating its synthesis, cell surface and axonal trafficking in DRG neurons. ⋯ Our data indicate that facilitating TRPV1 synthesis, cell surface and axonal trafficking is a novel mechanism underlying PGE2 potentiation of TRPV1 activity.