Articles: hyperalgesia.
-
Osteoarthr. Cartil. · Nov 2015
Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity.
The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. ⋯ Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain.
-
Experimental neurology · Nov 2015
Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.
Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. ⋯ Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.
-
Spinal ephrinB-EphB signaling is involved in the modulation of pain processing. The aim of the present study was to investigate whether protein kinase C-γ (PKCγ) acts as a downstream effector in regulating spinal pain processing associated with ephrinB-EphB signaling in mice. The intrathecal injection of ephrinB2-Fc, an EphB receptor activator, caused thermal hyperalgesia and mechanical allodynia, as well as increased activation of spinal PKCγ. ⋯ Furthermore, the intrathecal injection of EphB2-Fc, an EphB receptor blocker, suppressed formalin-induced inflammatory, chronic constriction injury (CCI)-induced neuropathic, and tibia bone cavity tumor cell implantation (TCI)-induced bone cancer pain behaviors, in addition to reducing the activation of spinal PKCγ. Finally, the intrathecal injection of MK801, an N-methyl-D-aspartate (NMDA) receptor blocker, prevented the pain behaviors and spinal PKCγ activation induced by ephrinB2-Fc. Overall, the results confirm the important role of PKCγ in the regulation of spinal pain processing associated with ephrinB-EphB signaling.