Articles: hyperalgesia.
-
Anesthesia and analgesia · Jul 2015
The Effects of Intraplantar and Intrathecal Botulinum Toxin Type B on Tactile Allodynia in Mono and Polyneuropathy in the Mouse.
Mononeuropathies (MNs: nerve ligation) and polyneuropathies (PNs: cisplatin) produce unilateral and bilateral tactile allodynia, respectively. We examined the effects of intraplantar (IPLT) and intrathecal (IT) botulinum toxin B (BoNT-B) on this allodynia. ⋯ BoNT-B given IPLT and IT yields a long-lasting attenuation of the allodynia in mice displaying MN and PN allodynia.
-
Monthly primary dysmenorrhoeic pain is associated with increased sensitivity to painful stimuli, particularly in deep tissue. We investigated whether women with dysmenorrhoea, compared with controls, have increased sensitivity to experimentally induced deep-tissue muscle ischaemia in a body area distant from that of referred menstrual pain. ⋯ These data show that compared with controls, women who experience severe recurrent dysmenorrhoea have deep-tissue hyperalgesia to ischaemic pain in muscles outside of the referred area of menstrual pain both during the painful menstruation phase and pain-free follicular phase. These findings suggest the presence of long-lasting changes in muscle pain sensitivity in women with dysmenorrhoea. Our findings that dysmenorrhoeic women are hyperalgesic to a clinically relevant, deep-muscle ischaemic pain in areas outside of referred menstrual pain confirm other studies showing long-lasting changes in pain sensitivity outside of the painful period during menstruation.
-
Nerve growth factor (NGF) causes early heat and delayed mechanical hyperalgesia. Axonal transport might contribute to lasting responses. Temporal hyperalgesia development was investigated by administering NGF in paraspinal skin. Transient receptor potential ankyrin 1 (TRPA1) is up-regulated by NGF and chemical responsiveness to cinnamon aldehyde (TRPA1 agonist) was quantified. ⋯ NGF causes immediate heat hyperalgesia probably linked to an up-regulation and sensitization of transient receptor potential vanilloid 1 and possibly other proteins involved in heat transduction. The delayed mechanical hyperalgesia is apparently independent of the time required for axonal transport of NGF receptor complexes. Local mRNA translation at axonal terminals and protein accumulation is hypothesized being involved in sustained NGF-evoked hyperalgesia.
-
Clin. Exp. Pharmacol. Physiol. · Jul 2015
Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats.
It is believed that neuropathic pain results from aberrant neuronal discharges although some evidence suggests that the activation of glia cells contributes to pain after an injury to the nervous system. This study aimed to evaluate the role of microglial activation on the hyper-responsiveness of wide dynamic range neurons (WDR) and Toll-like receptor 4 (TLR4) expressions in a chronic constriction injury (CCI) model of neuropathic pain in rats. Adult male Wistar rats (230 ± 30 g) underwent surgery for induction of CCI neuropathy. ⋯ Post-injury administration of minocycline effectively decreased thermal hyperalgesia, TLR4 expression, and hyper-responsiveness of WDR neurons in CCI rats. The results of this study indicate that post-injury, repeated administration of minocycline attenuated neuropathic pain by suppressing microglia activation and reducing WDR neuron hyper-responsiveness. This study confirms that post-injury modulation of microglial activity is a new strategy for treating neuropathic pain.
-
Accumulating evidence suggests that opioid analgesics can lead to paradoxical sensitization to pain when delivered in different administration patterns. Although opioid tolerance-induced hyperalgesia is largely studied, little is known about the mechanisms underlying acute ultra-low-dose morphine hyperalgesia. Activation of spinal glial cells is reported to regulate pain hypersensitivity. ⋯ Immunofluorescence experiments indicated the neuronal localization of spinal MOR. However, JNK was not detected in MOR-expressing cells, showing the presence of a neuron-astrocyte signaling pathway. These results illustrate the selective activation of an astrocyte JNK pathway after the stimulation of neuronal MOR, which contributes to ultra-low-dose morphine hyperalgesia.