Articles: hyperalgesia.
-
The analgesic properties of antidepressants are often used in the treatment of neuropathy; however their influence on glial cells in maintaining neuropathic pain is unknown. Our studies examined the neuropathic pain-relieving properties after intraperitoneal injection of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine 7 days after sciatic nerve injury (CCI) in rats and its influence on microglia/macrophages (IBA-1) and astroglia (GFAP) activation in the spinal cord and dorsal root ganglia (DRG) using Western blot. All tested antidepressants significantly reduced CCI-induced allodynia but hyperalgesia was only antagonised by fluoxetine, doxepine and venlafaxine. ⋯ No changes in the GFAP level in both structures were observed after any of listed above antidepressants administration. Chronic minocycline treatment enhanced amitriptyline and milnacipran, but did not fluoxetine analgesia under neuropathic pain in rats. Our results suggest that nerve injury-induced pain is related with the activation of microglia, which is diminished by fluoxetine treatment in the neuropathic pain model.
-
Granulocyte-colony stimulating factor (G-CSF) is a therapeutic approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is the major side effect of G-CSF. Intraplantar administration of G-CSF in mice induces mechanical hyperalgesia. ⋯ Systemic IL-1ra reduced G-CSF-induced increase of peripheral neutrophil counts. However, local treatment with morphine, IL-1ra or etanercept, and systemic treatment with indomethacin, etanercept, thalidomide and pentoxifylline did not alter G-CSF-induced mobilization of neutrophils. Therefore, this study advances in the understanding of G-CSF-induced hyperalgesia and suggests therapeutic approaches for its control.
-
We tested the hypothesis that chronic pain development (pain chronification) and ongoing chronic pain (chronic pain) reduce the activity and induce plastic changes in an endogenous analgesia circuit, the ascending nociceptive control. An important mechanism mediating this form of endogenous analgesia, referred to as capsaicin-induced analgesia, is its dependence on nucleus accumbens μ-opioid receptor mechanisms. Therefore, we also investigated whether pain chronification and chronic pain alter the requirement for nucleus accumbens μ-opioid receptor mechanisms in capsaicin-induced analgesia. ⋯ Intra-accumbens injection of the μ-opioid receptor selective antagonist Cys(2),Tyr(3),Orn(5),Pen(7)amide (CTOP) 10 min before the subcutaneous injection of capsaicin into the rat's fore paw blocked capsaicin-induced analgesia. Taken together, these findings indicate that pain chronification and chronic pain reduce the duration of capsaicin-induced analgesia, without affecting its dependence on nucleus accumbens μ-opioid receptor mechanisms. The attenuation of endogenous analgesia during pain chronification and chronic pain suggests that endogenous pain circuits play an important role in the development and maintenance of chronic pain.
-
The endogenous tetrapeptide endomorphin-2 (EM2) participates in pain modulation by binding to pre- and/or post-synaptic μ opioid receptor (MOR). In the present study, pathological expression and antinociceptive effects of EM2 at the spinal level were investigated in a rat model of bone cancer pain. The model was established by introducing Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. ⋯ Furthermore, topical application of EM2 dose-dependently inhibited the electrically evoked C-fiber responses and postdischarge of wide dynamic range (WDR) neurons within the spinal cord (p < 0.05), and pretreatment with β-FNA abolished the hyperactivity of these neurons. Compared with the antinociception of morphine which took effect from 40 min to 100 min post application, the analgesic action of EM2 was characterized by quick onset and short-lived efficacy (p < 0.05), being most potent at 10 min and lasting about 20 min. These findings indicate that the down-regulated spinal EM2 is an important contributor to the neuropathological process of bone cancer pain and enhancing activation of EM2/μ receptor signaling might provide a therapeutic alternative to optimizing the treatment of cancer-induced bone pain.
-
Temporomandibular disorders (TMD) are an assorted set of clinical conditions characterized mainly by pain in the temporomandibular joint (TMJ). TMJ inflammation or synovitis is frequently observed in TMD patients and is the major reason for TMD pain. TMD is prevalent in women of childbearing age, at least twice than in men, implying that estrogen may be involved in TMD pain processing. ⋯ The voltage-gated sodium channel 1.7 (Nav1.7), whose single disruption leads to a complete loss of pain, amplifies weak stimuli in the neurons and acts as the threshold channel for firing action potentials and plays a prominent role in pain perception, including inflammatory pain. Furthermore, our previous study showed that trigeminal ganglionic Nav1.7 was involved in the hyperalgesia of the inflamed TMJ. We propose that estrogen may enhance hyperalgesia of inflamed TMJ through decrease nociceptive threshold of TMJ or inflamed TMJ by modulating both expression and channel threshold of Nav1.7 in trigeminal ganglion.