Articles: hyperalgesia.
-
Hormone replacement remains one of the common therapies for menopause-related pain but is associated with risk of orofacial or back pain. Spinal endomorphin-2 (EM-2) is involved in varied pain and its release is steroid-dependent, but whether increasing spinal EM-2 can inhibit thermal hyperalgesia and inflammatory pain in ovariectomized (OVX) female rats, an animal model mimicking menopause, is not clear, nor is the potential involvement of spinal mu-opioid receptor (MOR). In the current study, we revealed that the temporal decrease of spinal EM-2 is accompanied with OVX-induced thermal hyperalgesia that was dose-dependently attenuated by intrathecal (IT) delivery of EM-2. ⋯ Furthermore, IT delivery of EM-2 did not affect the animals' locomotion or anxiety status. Our findings suggested that IT EM-2 might be a safer analgesia strategy than hormone replacement therapy in reducing risk of orofacial or back pain. However, a long-lasting form of EM-2 with less tolerance is needed to induce sustained analgesia.
-
Animal models in pain research have suggested that inclusion of both evoked and nonevoked behavioral measures is needed to better reflect the human pain experience. Individuals with chronic pain are known to experience spontaneous pain, in addition to pain after exposure to an external stimulus. Recently, the dynamic weight bearing (DWB) apparatus was developed to assess for nonevoked hyperalgesia by capturing weight bearing and surface distribution in the paws of mice after acute inflammation. ⋯ Mice with inflammation showed alterations in weight bearing as well as increased thermal hyperalgesia in comparison with control groups. These findings support the use of the DWB test as a tool for measuring nonevoked inflammatory hyperalgesia in a mouse model.
-
Neurochemical research · Mar 2015
Curcumin attenuates CFA induced thermal hyperalgesia by modulation of antioxidant enzymes and down regulation of TNF-α, IL-1β and IL-6.
Reactive oxygen species are signaling mediators of nociceptive pathways. Exogenous administrations of antioxidants show anti-hyperalgesic effect. However, very little is known about the role of endogenous antioxidant defense system in pain pathology. ⋯ The changes were brought towards normal level after curcumin treatment. The results suggest that modulation of antioxidant defense system is early event in initiation of inflammatory hyperalgesia which might lead to initiation of other signaling pathways mediated by lipid peroxide, TNF-α, IL-1β and IL-6. Decrease in oxidative stress and down regulation of these cytokines by curcumin is suggested to be involved in its anti-hyperalgesic effect.
-
Cannabinoids produce anti-nociceptive and anti-hyperalgesic effects in acute, inflammatory and neuropathic pain models. The current study investigated the role of cannabinoid (CB1 and CB2) receptors in modulating formalin-induced nociceptive behavior and mechanical allodynia in the rat. Rats received subcutaneous plantar injections of 5% formalin in the hind paws. ⋯ Animals in the experimental group were given i.p. injections of CB1 and CB2 receptor antagonists AM281 and AM630 at a dose of 1 mg/kg concomitant with formalin, and then twice daily for the following 7 days. AM281 and AM630 enhanced nociceptive behaviors, and attenuated the bilateral mechanical paw withdrawal threshold, compared with the vehicle. The results indicate that CB1 and CB2 receptors mediate a tonically inhibitory action on formalin-induced inflammatory pain, especially long-term allodynia, in bilateral hind paws.
-
The analgesic properties of antidepressants are often used in the treatment of neuropathy; however their influence on glial cells in maintaining neuropathic pain is unknown. Our studies examined the neuropathic pain-relieving properties after intraperitoneal injection of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine 7 days after sciatic nerve injury (CCI) in rats and its influence on microglia/macrophages (IBA-1) and astroglia (GFAP) activation in the spinal cord and dorsal root ganglia (DRG) using Western blot. All tested antidepressants significantly reduced CCI-induced allodynia but hyperalgesia was only antagonised by fluoxetine, doxepine and venlafaxine. ⋯ No changes in the GFAP level in both structures were observed after any of listed above antidepressants administration. Chronic minocycline treatment enhanced amitriptyline and milnacipran, but did not fluoxetine analgesia under neuropathic pain in rats. Our results suggest that nerve injury-induced pain is related with the activation of microglia, which is diminished by fluoxetine treatment in the neuropathic pain model.