Articles: hyperalgesia.
-
Neurochemical research · Aug 2012
Interleukin-10 of red nucleus plays anti-allodynia effect in neuropathic pain rats with spared nerve injury.
Our previous studies have shown that pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in red nucleus (RN) are involved in the development of neuropathic pain and play facilitated roles on the mechanical allodynia induced by peripheral nerve injury. The current study was designed to evaluate the expression and effect of IL-10, an anti-inflammatory cytokine, in the RN of rats with spared nerve injury (SNI). ⋯ Results demonstrated that higher doses of IL-10 (1.0 and 0.5 μg/μl) significantly attenuated the mechanical allodynia of neuropathic rats, while 0.1 μg/μl of IL-10 did not show any analgesic effect. These results suggest that IL-10 of RN participates in the development of neuropathic pain and plays inhibitory roles on the mechanical allodynia induced by SNI.
-
Multiple abnormalities in pain processing have been reported in patients with chronic musculoskeletal pain syndromes. These changes include mechanical and thermal hyperalgesia, decreased thresholds to mechanical and thermal stimuli (allodynia), and central sensitization, all of which are fundamental to the generation of clinical pain. Therefore, we hypothesized that quantitative sensory tests may provide useful predictors of clinical pain intensity of such patients. Our previous studies of fibromyalgia (FM) patients have shown statistically significant correlations of quantitative sensory test results with clinical pain intensity, including mechanical spatial summation, number of pain areas, wind-up, and wind-up aftersensations. Although these tests predicted up to 59% of the variance in FM clinical pain intensity, their expense and technical complexities limited widespread use in clinical practice and trials. Thus, we developed practical tests of primary (mechanical) and secondary (heat) hyperalgesia that also strongly predict clinical pain intensity in patients with chronic musculoskeletal pain disorders. Thirty-six individuals with FM, 24 with local musculoskeletal pain, and 23 normal controls underwent testing of mechanical and heat hyperalgesia at the shoulders and hands. All subjects rated experimental pains using an electronic visual analog scale. Using either heat or pressure pain ratings as well as tender point counts and negative affect as predictors, up to 49.4% of the patients' variance of clinical pain intensity could be estimated. Results of this study emphasize the important contributions of peripheral and central factors to both local and widespread chronic pain. Overall, measures of mechanical and heat hyperalgesia in combination with tender point and negative affect provided powerful predictors of clinical pain intensity in chronic musculoskeletal pain patients that can be readily used in clinical practice and trials. ⋯ Simple tests of mechanical and heat hyperalgesia can predict large proportions of the variance in clinical pain intensity of chronic musculoskeletal pain patients and thus are feasible to be included in clinical practice and clinical trials.
-
The veterinary journal · Aug 2012
Comparative StudyClinical assessments of increased sensory sensitivity in dogs with cranial cruciate ligament rupture.
Dogs with chronic pain have a compromised quality of life. Repeatable and accurate sensory assessments form a means by which the hypersensitivity likely to reflect chronic pain may be quantified. These assessments can be applied to individuals to identify those that may benefit from improved analgesic relief. ⋯ Static weight bearing and gait parameter scores were also reduced in the affected hind limb compared to the opposing hind limb of dogs with CCLR; no such differences were found between the hind limbs of healthy (control) dogs. The quantitative sensory tests permitted the differentiation of limbs affected by CCLR from healthy limbs. Dogs presenting with CCLR demonstrate objectively quantitative sensory sensitivities, which may require additional consideration in case management.
-
The purpose of this study was to examine differences in heat pain threshold (HPTh) and heat pain tolerance (HPTo) between temporomandibular joint disorder (TMJD) patients and healthy controls. Using suprathreshold heat pain, this study also examined between-group (i.e. TMJD vs. healthy controls) differences in hyperalgesia and temporal summation (TS) of heat pain. ⋯ Data analysis revealed a significant simple mediation effect whereby the presence of TMJD was strongly associated with poorer self-reported sleep quality, which, in turn, was related to enhanced hyperalgesia at 46 °C. These findings support the hypothesis that the thermal hyperalgesia demonstrated by TMJD patients may be related to poor quality of their self-reported sleep. The ability of interventions that improve sleep quality to also affect pain sensitivity is currently the topic of ongoing investigation.
-
Inflammatory thermal hyperalgesia is principally mediated through transient receptor potential vanilloid 1 (TRPV1) channels, as demonstrated by prior studies using models of cutaneous inflammation. Muscle pain is significantly different from cutaneous pain, and the involvement of TRPV1 in hyperalgesia induced by muscle inflammation is unknown. We tested whether TRPV1 contributes to the development of mechanical and heat hypersensitivity of the paw in TRPV1(-/-) mice after muscle inflammation. ⋯ Heat hypersensitivity induced by muscle inflammation did not develop in TRPV1(-/-) mice; mechanical hypersensitivity was similar between TRPV1(-/-) and TRPV1(+/+) mice. Heat hypersensitivity induced by muscle inflammation was restored by reexpression of TRPV1 into both muscle and skin of TRPV1(-/-) mice. These results suggest that TRPV1 serves as both a mediator of nociceptor sensitization at the site of inflammation and as a heat sensor at the paw.