Articles: hyperalgesia.
-
Journal of neurochemistry · May 2012
Phosphorylated CaMKII post-synaptic binding to NR2B subunits in the anterior cingulate cortex mediates visceral pain in visceral hypersensitive rats.
The NR2B subunit of NMDA receptor in the anterior cingulate cortex (ACC) is up-regulated in viscerally hypersensitive (VH) rats induced by colonic anaphylaxis. It plays a critical role in modulation of ACC sensitization and visceral pain responses. Given the key role of calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity and behavior learning and memory, we hypothesize that phosphorylation of CaMKII binding to NR2B mediates visceral pain in VH states. ⋯ Western blotting following co-immunoprecipitation showed that P-CaMKII-Thr²⁸⁶ bound to NR2B in the PSD, which was increased to 267% of control in VH rats. Administration of CaMKII antagonist Antennapedia-CaMKIINtide suppressed visceromotor response in VH rats in parallel with decrease of NR2B levels and reduction of the NR2B-P-CaMKII-Thr²⁸⁶ protein complex in PSD. In conclusion, CaMKII is a critical signaling molecule in the ACC glutamatergic synaptic transmission and phosphorylation of CaMKII at Thr286, which binds to NR2B subunit at post-synaptic site, modulates visceral pain in viscerally hypersensitive state.
-
J. Pharm. Pharmacol. · May 2012
Involvement of inflammation in severe post-operative pain demonstrated by pre-surgical and post-surgical treatment with piroxicam and ketorolac.
Post-operative pain is considered to involve inflammation caused by tissue injury. However, the mechanism and timing of the involvement of inflammation in the post-operative pain remain complicated because they can vary among different types of surgery. In this study a rat incision model was used to investigate how inflammation induced by cyclooxygenases (COXs) is involved in severe post-operative pain. ⋯ These findings suggest the involvement of cyclooxygenases in evoking pain that occurs in the immediate post-operative period, and that an initial suppression of rapid inflammation by treatment with NSAIDs before major surgery plays an important role in the management of severe post-operative pain.
-
Peripheral nerve injuries can trigger neuropathic pain in adults but cause little or no pain when they are sustained in infancy or early childhood. This is confirmed in rodent models where neonatal nerve injury causes no pain behaviour. However, delayed pain can arise in man some considerable time after nerve damage and to examine this following early life nerve injury we have carried out a longer term follow up of rat pain behaviour into adolescence and adulthood. ⋯ We report a novel consequence of early life nerve injury whereby mechanical hypersensitivity only emerges later in life. This delayed adolescent onset in mechanical pain thresholds is accompanied by neuroimmune activation and NMDA dependent central sensitization of spinal nociceptive circuits. This delayed onset in mechanical pain sensitivity may provide clues to understand the long term effects of early injury such as late onset phantom pain and the emergence of complex adolescent chronic pain syndromes.
-
Spinal neuroinflammation has been shown to play an important role in the development of morphine tolerance and morphine withdrawal-induced hyperalgesia. Lipoxins are endogenous lipoxygenase-derived eicosanoids that can function as "braking signals" in inflammation. The present study investigated the effect of 5 (S), 6 (R)-lipoxin A4 methyl ester (LXA4ME), a stable synthetic analog of lipoxin A4, on the expression of antinociceptive tolerance and withdrawal-induced hyperalgesia in chronic morphine-treated rats. ⋯ However, LXA4ME treatment significantly attenuated the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. Moreover, the administration of LXA4ME during the induction of morphine tolerance inhibited the activation of microglia and astrocytes; reduced the expression of proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α); upregulated the expression of anti-inflammatory cytokines IL-10 and transforming growth factor-β1 (TGF-β1); and inhibited nuclear factor-kappa B (NF-κB) activation at the L5 lumbar spinal cord. These results suggest that treatment of LXA(4)ME provides a potential preventative or therapeutic approach for morphine tolerance and associated abnormal pain sensitivity.