Articles: hyperalgesia.
-
Iatrogenic pain consecutive to a large number of surgical procedures has become a growing health concern. The etiology and pathophysiology of postoperative pain are still poorly understood, but hydrogen ions appear to be important in this process. We have investigated the role of peripheral acid-sensing ion channels (ASICs), which form depolarizing channels activated by extracellular protons, in a rat model of postoperative pain (i.e., hindpaw skin/muscle incision). ⋯ ASIC3 appears to have an important role in deep tissue but also affects prolonged pain evoked by skin incision alone. The specific homomeric ASIC1a blocker PcTx1 has no effect on spontaneous flinching, when applied peripherally. Together, these data demonstrate a significant role for peripheral ASIC3-containing channels in postoperative pain.
-
Zhonghua yi xue za zhi · Apr 2011
[Cohort study of remifentanil-induced hyperalgesia in postoperative patients].
To investigate the incidence of remifentanil-induced hyperalgesia and screen for the relevant influencing factors in the post-operative patients. ⋯ Ages under 16 years old, operative duration and remifentanil dose are the risk factors for postoperative remifentanil-induced hyperalgesia. Neither methods of general anesthesia nor operative sites has any effect on the occurrence of hyperalgesia.
-
The effects of several potassium (K(+)) channel blockers were studied to determine which K(+) channels are involved in peripheral antinociception induced by the cannabinoid receptor agonist, anandamide. ⋯ This study provides evidence that the peripheral antinociceptive effect of the cannabinoid receptor agonist, anandamide, is primarily caused by activation of ATP-sensitive K(+) channels and does not involve other potassium channels.
-
Structural and functional plastic changes in the primary somatosensory cortex (S1) have been observed following peripheral nerve injury that often leads to neuropathic pain, which is characterized by tactile allodynia. However, remodeling of cortical connections following injury has been believed to take months or years; this is not temporally correlated with the rapid development of allodynia and S1 hyperexcitability. Here we first report, by using long-term two-photon imaging of postsynaptic dendritic spines in living adult mice, that synaptic connections in the S1 are rewired within days following sciatic nerve ligation through phase-specific and size-dependent spine survival/growth. ⋯ New spines that generated before nerve injury showed volume decrease after injury, whereas more new spines that formed in the early phase of neuropathic pain became persistent and substantially increased their volume during the late phase. Further, preexisting stable spines survived less following injury than controls, and such lost persistent spines were smaller in size than the surviving ones, which displayed long-term potentiation-like enlargement over weeks. These results suggest that peripheral nerve injury induces rapid and selective remodeling of cortical synapses, which is associated with neuropathic pain development, probably underlying, at least partially, long-lasting sensory changes in neuropathic subjects.
-
Pharmacol. Biochem. Behav. · Apr 2011
Granulocyte-colony stimulating factor (G-CSF) induces mechanical hyperalgesia via spinal activation of MAP kinases and PI3K in mice.
Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). ⋯ Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain.