Articles: hyperalgesia.
-
We investigated the effects of chronic (eight weeks) low-to moderate-intensity swimming training on thermal pain sensitivity in streptozotocin-induced diabetic female rats. ⋯ Low-to-moderate swimming training for a long duration reduces thermal hyperalgesia during a hot plate test in streptozotocin-induced diabetic female rats.
-
Hyperalgesia in animal injury models is linked to activation of descending raphespinal modulatory circuits originating in the rostral ventromedial medulla (RVM). A neurokinin-1 (NK-1) receptor antagonist microinjected into the RVM before or after inflammation produced by complete Freund's adjuvant (CFA) resulted in an attenuation of thermal hyperalgesia. A transient (acute) or a continuous infusion of Substance P (SP) microinjected into the RVM of non-inflamed animals led to similar pain hypersensitivity. ⋯ Following a low dose of SP infused into the RVM, intrathecal muscimol (GABA(A) agonist) increased SP-induced thermal hyperalgesia, phosphorylated NKCC1 protein expression, and NMDA NR1 subunit phosphorylation in the spinal cord. The thermal hyperalgesia was blocked by intrathecal gabazine, the GABA(A) receptor antagonist, and MK-801, the NMDA receptor channel blocker. These findings indicate that NK-1 receptors in the RVM are involved in SP-induced thermal hyperalgesia, this hyperalgesia is 5-HT3-receptor dependent at the spinal level, and involves the functional interaction of spinal GABA(A) and NMDA receptors.
-
Proc. Natl. Acad. Sci. U.S.A. · Dec 2010
VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity.
Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutamate transporter 2 (VGLUT2) is ablated selectively from DRG neurons. ⋯ Strikingly, although tissue injury-induced heat hyperalgesia was lost in the cKO mice, mechanical hypersensitivity developed normally. In a model of nerve injury-induced neuropathic pain, the magnitude of heat hypersensitivity was diminished in cKO mice, but both the mechanical allodynia and the microgliosis generated by nerve injury were intact. These findings suggest that VGLUT2 expression in nociceptors is essential for normal perception of acute pain and heat hyperalgesia, and that heat and mechanical hypersensitivity induced by peripheral injury rely on distinct (VGLUT2 dependent and VGLUT2 independent, respectively) primary afferent mechanisms and pathways.
-
Activation of peripheral P2X3 and P2X2/3 receptors by endogenous ATP is essential to the development of inflammatory hyperalgesia. We have previously demonstrated that this essential role of P2X3 and P2X2/3 receptors in the development of mechanical hyperalgesia induced by the inflammatory agent carrageenan is mediated by an indirect sensitization of the primary afferent nociceptors dependent on the previous release of tumor necrosis factor alpha (TNF-α) and by a direct sensitization of the primary afferent nociceptors. Therefore, in this study we asked whether activation of P2X3 and P2X2/3 receptors contribute to the mechanical hyperalgesia induced by the inflammatory mediators involved in carrageenan-induced mechanical hyperalgesia, such as bradykinin, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), chemokine-induced chemoattractant-1 (CINC-1), prostaglandin E₂ (PGE₂) and dopamine. ⋯ We also verified whether the activation of P2X3 and P2X2/3 receptors by endogenous ATP contributes to bradykinin-induced mechanical hyperalgesia via neutrophil migration and/or cytokine release. Co-administration of TNP-ATP or A-317491 did not affect either neutrophil migration or the increased concentration of TNF-α, IL-1β, IL-6 and CINC-1 induced by bradykinin. These findings demonstrate that the activation of P2X3 and P2X2/3 receptors by endogenous ATP mediates bradykinin-induced mechanical hyperalgesia by a mechanism that does not depend on neutrophil migration or cytokines release.
-
Physiology & behavior · Dec 2010
Progesterone rapidly recruits female-typical opioid-induced hyperalgesic mechanisms.
Continuous morphine treatment can paradoxically increase nociception (i.e. hyperalgesia) in male and female mice, but sex differences have been reported. Here, we studied progesterone modulation of these differences by assessing nociception on the tail-withdrawal test in male and female mice rendered hyperalgesic during continuous infusion of two different morphine doses (1.6 and 40.0mg/kg/24h). Although the lower morphine infusion dose increased nociception in both sexes by infusion Day 4, this hyperalgesia dissipated by Day 6 in males and ovariectomized females, but not gonadally intact females. ⋯ However, the NMDA receptor antagonist MK-801 (0.05mg/kg) reversed hyperalgesia in males and ovariectomized females but not gonadally intact females on infusion Day 6. Subcutaneous progesterone (0.0016mg/kg) injection inhibited this reversal in male and ovariectomized female mice but had no effect on nociception in saline-infused mice of either sex. These data confirm our previous findings that male and female mice utilize distinct hyperalgesic mechanisms, and show for the first time that a single progesterone bolus dose can recruit female-typical hyperalgesia in ovariectomized females and males.