Articles: hyperalgesia.
-
We have developed a model in which inflammation contiguous to and within a dorsal root ganglion (DRG) was generated by local application of complete Freund's adjuvant (CFA) to the L4 lumbar spinal nerve as it exits from the intervertebral foramen. The periganglionic inflammation (PGI) elicited a marked reduction in withdrawal threshold to mechanical stimuli and an increase in heat pain sensitivity in the ipsilateral hindpaw in the absence of any hindpaw inflammation. The pain sensitivity appeared within hours and lasted for a week. ⋯ We also show that IL-1beta induces COX-2 expression and prostaglandin release in DRG neurons in vitro in a MAP kinase-dependent fashion. The COX-2 induction was prevented by ERK and p38 inhibitors. We conclude that periganglionic inflammation increases cytokine levels, including IL-1beta, leading to the transcription of COX-2 and prostaglandin production in the affected DRG, and thereby to the development of a dermatomally distributed pain hypersensitivity.
-
Although intrathecal (i.t.) administration of the alpha(2)-adrenoceptor agonist clonidine has a pronounced analgesic effect, the clinical use of clonidine is limited by its side effects. Previously, our laboratory has demonstrated that the subcutaneous injection of diluted bee venom (DBV) into an acupoint (termed apipuncture) produces significant analgesic effect in various pain animal models. The present study was designed to examine whether DBV injection into the Zusanli acupoint (ST-36) could enhance lower-dose clonidine-induced analgesic effects without the development of hypotension, bradycardia, or sedation. In the mouse formalin test, DBV injection produced a dramatic leftward shift in the dose-response curve for clonidine-induced analgesia. In a rat neuropathic pain model i.t. clonidine dose dependently suppressed chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia, and this clonidine-induced analgesic effect was significantly potentiated by apipuncture pretreatment. DBV apipuncture alone or in combination with a low dose of i.t. clonidine produced an analgesic effect similar to that of the high dose of clonidine, but without significant side effects. The analgesic effect produced by the combination of i.t. clonidine and apipuncture was completely blocked by pretreatment with an alpha(2)-adrenoceptor antagonist. These data show that DBV-apipuncture significantly enhances clonidine-induced analgesia and suggest that a combination of low dose clonidine with acupuncture therapy represents a novel strategy for pain management that could eliminates clonidine's side effects. ⋯ This study demonstrated that intrathecal clonidine-induced analgesia is significantly enhanced when it is combined with chemical acupuncture treatment. The administration of low-dose clonidine in combination with acupuncture produced a potent analgesic effect without significant side effects and thus represents a potential novel strategy for the management of chronic pain.
-
The activation of extracellular signal-regulated protein kinase (ERK) is essential for pain sensation and development of hyperalgesia in chronic pathological pain. Neonatal maternal separation (NMS) could trigger behavioral hyperalgesia and upregulate central neuronal activity in rats. The present study aims to investigate whether ERK associates with the colorectal distension (CRD)-evoked neuronal response and the upregulated central sensitivity to CRD in NMS rats. ⋯ Correlation analysis revealed the positive association between c-fos- and p-ERK-immunoreactive nuclei numbers in the DRG, lumbosacral dorsal horn, and ACC. These results demonstrate that ERK is actively involved in CRD-evoked neuronal activation in both NH and NMS rats. Moreover, ERK is associated with the upregulated central neuronal sensitivity to noxious CRD in NMS rats, which may be responsible for the behavioral hyperalgesia in NMS rat.
-
Opiates are currently the mainstay for treatment of moderate to severe pain. However, prolonged administration of opiates has been reported to elicit hyperalgesia in animals, and examples of opiate-induced hyperalgesia have been reported in humans as well. Despite the potential clinical significance of such opiate-induced actions, the mechanisms of opiate-induced hypersensitivity remain unknown. The transient receptor potential vanilloid1 (TRPV1) receptor, a molecular sensor of noxious heat, acts as an integrator of multiple forms of noxious stimuli and plays an important role in the development of inflammation-induced hyperalgesia. Because animals treated with opiates show thermal hyperalgesia, we examined the possible role of TRPV1 receptors in the development of morphine-induced hyperalgesia using TRPV1 wild-type (WT) and knock-out (KO) mice and with administration of a TRPV1 antagonist in mice and rats. Administration of morphine by subcutaneous implantation of morphine pellets elicited both thermal and tactile hypersensitivity in TRPV1 WT mice but not in TRPV1 KO mice. Moreover, oral administration of a TRPV1 antagonist reversed both thermal and tactile hypersensitivity induced by sustained morphine administration in mice and rats. Immunohistochemical analyses indicate that sustained morphine administration modestly increases TRPV1 labeling in the dorsal root ganglia. In addition, sustained morphine increased flinching and plasma extravasation after peripheral stimulation with capsaicin, suggesting an increase in TRPV1 receptor function in the periphery in morphine-treated animals. Collectively, our data indicate that the TRPV1 receptor is an essential peripheral mechanism in expression of morphine-induced hyperalgesia. ⋯ Opioid-induced hyperalgesia possibly limits the usefulness of opioids, emphasizing the value of alternative methods of pain control. We demonstrate that TRPV1 channels play an important role in peripheral mechanisms of opioid-induced hyperalgesia. Such information may lead to the discovery of analgesics lacking such adaptations and improving treatment of chronic pain.
-
This observational study aimed to determine whether pain sensitivity in patients with noncancer chronic pain, taking either methadone or morphine, is similar to patients maintained on methadone for dependence therapy, compared with a control group. Nociceptive thresholds were measured on a single occasion with von Frey hairs, electrical stimulation, and cold pressor tests. In all subjects receiving methadone or morphine, nociceptive testing occurred just before a scheduled dose. Cold pressor tolerance values in patients with noncancer, chronic pain, treated with morphine and methadone, were 18.1 +/- 2.6 seconds (mean +/- SEM) and 19.7 +/- 2.3 seconds, respectively; in methadone-maintained subjects it was 18.9 +/- 1.9 seconds, with all values being significantly (P < .05) lower than opioid-naïve subjects (30.7 +/- 3.9 seconds). These results indicate that patients with chronic pain managed with opioids and methadone-maintained subjects are hyperalgesic when assessed by the cold pressor test but not by the electrical stimulation test. None of the groups exhibited allodynia as measured using the von Frey hairs. These results add to the growing body of evidence that chronic opioid exposure increases sensitivity to some types of pain. They also demonstrate that in humans, this hyperalgesia is not associated with allodynia. ⋯ This article presents an observational study whereby the pain sensitivity of patients with chronic pain managed with opioids and opioid-maintained patients were compared with opioid-naïve patients. The results suggest that opioid use may contribute to an increase in the sensitivity to certain pain experimental stimuli.