Articles: hyperalgesia.
-
B vitamins can effectively attenuate inflammatory and neuropathic pain in experimental animals, while their efficacy in treating clinical pain syndromes remains unclear. To understand possible mechanisms underlying B vitamin-induced analgesia and provide further evidence that may support the clinical utility of B vitamins in chronic pain treatment, this study investigated effects of thiamine (B1) on the excitability and Na currents of dorsal root ganglion (DRG) neurons that have been altered by nerve injury. ⋯ Thiamine can reduce hyperexcitability and lessen alterations of Na currents in injured DRG neurons, in addition to suppressing thermal hyperalgesia.
-
Increasing evidence suggests that chronic stress plays an important role in the pathophysiology of several functional gastrointestinal disorders. We investigated whether cannabinoid receptor 1 (CB1) and vanilloid receptor 1 (TRPV1; transient receptor potential vanilloid 1) are involved in stress-induced visceral hyperalgesia. ⋯ These results suggest that the endocannabinoid (CB1) and TRP (TRPV1) pathways may play a potentially important role in stress-induced visceral hyperalgesia.
-
Area-specific representation of mechanical nociceptive stimuli within SI cortex of squirrel monkeys.
While functional imaging studies in humans have consistently reported activation of primary somatosensory cortex (SI) with painful stimuli, the specific roles of subdivisions of areas 3a, 3b, and 1 within SI during pain perception are largely unknown, particularly in the representation of mechanical evoked pain. In this study, we investigated how modality, location, and intensity of nociceptive stimuli are represented within SI by using high-spatial resolution optical imaging of intrinsic signals in Pentothal-anesthetized squirrel monkeys. Perceptually comparable mechanical nociceptive and innocuous tactile stimuli were delivered by indenting the glabrous skin of the distal finger pads with 0.2 and 2mm diameter probes, respectively. ⋯ However, with innocuous tactile stimulation, mainly areas 3b and 1 exhibited response modulation with different levels of stimulation. In summary, mechanical nociceptive inputs are area-specific and topographically represented within SI. We propose that all areas of SI are implicated in encoding the features of mechanical nociception, where areas 3a and 3b are distinctively involved in coding nociceptive and pressure sensation components of stimulation.
-
The aim of the study was to evaluate whether or not there exists nociceptive and non-nociceptive hypersensitivity at latent myofascial trigger points (MTrPs). ⋯ These results confirm the existence of nociceptive hypersensitivity at latent MTrPs and provide the first evidence that there exists non-nociceptive hypersensitivity (allodynia) at latent MTrPs. Finally, the occurrence of referred muscle pain is associated with higher pain sensitivity at latent MTrPs.
-
Ionotropic gamma-aminobutyric acid (GABA(A)) receptors control the relay of nociceptive signals at several levels of the neuraxis. Experiments with systemically applied benzodiazepines, which enhance the action of GABA at these receptors, have suggested both anti- and pronociceptive effects. The interpretation of such experiments has been notoriously difficult because of confounding sedation. ⋯ The relative contributions of these subunits were alpha2 approximately alpha3>alpha5, and thus very similar to those found for intrathecal diazepam (0.09 mg/kg). Accordingly, SL-651498 (10mg/kg, p.o.), an "anxioselective" benzodiazepine site agonist with preferential activity at alpha2/alpha3 subunits, significantly reduced formalin-induced flinching in wild-type mice. We conclude that systemic diazepam exerts a genuine antihyperalgesic effect, which depends on spinal GABA(A) receptors containing alpha2 and/or alpha3 subunits.