Articles: hyperalgesia.
-
BIM-46187 (7-[2-amino-1-oxo-3-thio-propyl]-8-cyclohexylmethyl-2-phenyl-5,6,7,8-tetrahydro-imidazo-[1,2a]-pyrazine dimer, hydrochloride) is an inhibitor of the heterotrimeric G-protein complex signalling. Since many mediators of pain act through G-protein coupled receptors, the anti-hyperalgesic effects of BIM-46187 were assessed on experimental models of pain. In addition since opioids are widely used in pain management and act through specific G-protein-coupled receptors, the effects of BIM-46187 on the analgesic properties of morphine have also been investigated. ⋯ Conversely, the drug combination did not increase the side effects of morphine as assessed in the rotarod test. In conclusion, BIM-46187 elicits a potent anti-hyperalgesic effect and strongly synergizes with morphine. This work highlights the role of heterotrimeric G-protein complexes in pain and supports further investigations of the use of BIM-46187 alone, or in combination with low doses of morphine, in the management of pain.
-
Journal of neurotrauma · Oct 2008
Segmental neuropathic pain does not develop in male rats with complete spinal transections.
In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. ⋯ However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.
-
Neurochemical research · Oct 2008
Mu-opioid receptor in the nucleus submedius: involvement in opioid-induced inhibition of mirror-image allodynia in a rat model of neuropathic pain.
The current study investigated the roles of various subtypes of opioid receptors expressed in the thalamic nucleus submedius (Sm) in inhibition of mirror-image allodynia induced by L5/L6 spinal nerve ligation in rats. Morphine was microinjected into the Sm, which produced a dose-dependent inhibition of mirror-image allodynia; this effect was antagonized by pretreatment with non-selective opioid receptor antagonist naloxone. ⋯ The kappa-receptor agonist, spiradoline mesylate salt, failed to alter the mirror-image allodynia. These results suggest that Sm opioid receptor signaling is involved in inhibition of mirror-image allodynia; this effect is mediated by mu- (but not delta- and kappa-) opioid receptors in the rat model of neuropathic pain.
-
Primary and metastatic cancers that effect bone are frequently associated with pain. Sensitization of primary afferent C nociceptors innervating tissue near the tumor likely contributes to the chronic pain and hyperalgesia accompanying this condition. This study focused on the role of the endogenous peptide endothelin-1 (ET-1) as a potential peripheral algogen implicated in the process of cancer pain. ⋯ Whereas ET-1 produced sensitization of C nociceptors to heat stimuli in control mice, C nociceptors in tumor-bearing mice were sensitized to heat, and their responses were not further increased by ET-1. Importantly, administration of BQ-123 attenuated tumor-evoked sensitization of C nociceptors to heat. We conclude that ET-1 at the tumor site contributes to tumor-evoked excitation and sensitization of C nociceptors through an ETA receptor mediated mechanism.
-
Curr Opin Anaesthesiol · Oct 2008
ReviewNeuron-glia crosstalk gets serious: role in pain hypersensitivity.
Recent studies show that peripheral injury activates both neuronal and nonneuronal or glial components of the peripheral and central cellular circuitry. The subsequent neuron-glia interactions contribute to pain hypersensitivity. This review will briefly discuss novel findings that have shed light on the cellular mechanisms of neuron-glia interactions in persistent pain. ⋯ Evidence indicates that central glial activation depends on nerve inputs from the site of injury and release of chemical mediators. Hematogenous immune cells may migrate to/infiltrate the brain and circulating inflammatory mediators may penetrate the blood-brain barrier to participate in central glial responses to injury. Inflammatory cytokines such as interleukin-1beta released from glia may facilitate pain transmission through its coupling to neuronal glutamate receptors. This bidirectional neuron-glia signaling plays a key role in glial activation, cytokine production and the initiation and maintenance of hyperalgesia. Recognition of the contribution of the mutual neuron-glia interactions to central sensitization and hyperalgesia prompts new treatment for chronic pain.