Articles: hyperalgesia.
-
This study investigated the effect of 5th and 6th lumbar nerve (L5/L6) spinal nerve ligation (SNL) on activated nuclear factor kappaB (NFkBa) in nuclear extracts from the lumbar dorsal horn of the rat, and its relationship to prostaglandin (PG)-dependent spinal hyperexcitability and allodynia 3 days later. Male Sprague-Dawley rats, fitted with intrathecal (i.t.) catheters, underwent SNL- or sham-surgery. Paw withdrawal threshold (PWT), electromyographic analysis of the biceps femoris flexor reflex, and immunoblotting of the spinal cord were used. ⋯ R(-)-Ibuprofen and vehicle had no effect. These results demonstrate that NFkappaB is not only activated by SNL, but that spinal PG generated in the affected spinal cord from the onset of nerve injury facilitates this process. NFkappaB is a critical antecedent in the development of spinal PG-dependent hyperexcitability and allodynia in the SNL model.
-
The mechanisms of nociception in the low back are poorly understood, partly because systematic recordings from dorsal horn neurons with input from the low back are largely missing. The purpose of this investigation was to (1) identify spinal segments and dorsal horn neurons receiving input from the low back, (2) test the effect of nerve growth factor (NGF) injected into the multifidus muscle (MF) on the neurons' responsiveness, and (3) study the influence of a chronic MF inflammation on the responses. In rats, microelectrode recordings were made in the segments L2, L3, and L5 to find dorsal horn neurons having input from the low back (LB neurons). ⋯ The centers of the neurons' receptive fields (RFs) were consistently located 2-3 segments caudally relative to their recording site. The results show that (1) input convergence from various tissues is common for LB neurons, (2) the input from structures of the low back is processed 2-3 segments cranially relative to the vertebral level of the RFs, and (3) the responsiveness of LB neurons is increased during a pathologic alteration of the MF. The above findings may be relevant for some cases of chronic low back pain in patients.
-
The vast majority of the experimental pain studies have used acute, phasic heat stimuli to investigate the neurobiological mechanisms of pain. However, the validity of these models for understanding clinical forms of pain is questionable. We here describe the characteristics of a model of prolonged tonic heat pain stimulation and compared the responses on this test with other measures of pain. ⋯ Tonic heat pain ratings only correlated moderately with the pain threshold while stronger correlations were observed with pain tolerance and ratings of suprathreshold phasic heat pain. We conclude that the tonic heat model is a suitable model that can be applied without excessive discomfort in the majority of subjects and offers a valuable addition to the armamentarium of experimental pain models. The model can be particularly suitable for brain imaging receptor binding studies which require long stimulation periods.
-
Preclinical drug development for visceral pain has largely relied on quantifying pseudoaffective responses to colorectal distension (CRD) in restrained rodents. However, the predictive value of changes in simple reflex responses in rodents for the complex human pain experience is not known. Male rats were implanted with venous cannulas and with telemetry transmitters for abdominal electromyographic (EMG) recordings. [(14)C]-iodoantipyrine was injected during noxious CRD (60 mmHg) in the awake, nonrestrained animal. ⋯ Our findings support the validity of measurements of cerebral perfusion during CRD in the freely moving rat as a model of functional brain changes in human visceral pain. However, not all regions demonstrating significant group differences correlated with EMG or behavioral measures. This suggests that functional brain imaging captures more extensive responses of the central nervous system to noxious visceral distension than those identified by traditional measures.
-
Spinal cord stimulation (SCS) is an established treatment for neuropathic pain. However, SCS is not effective for all the patients and the mechanisms underlying the reduction in pain by SCS are not clearly understood. To elucidate the mechanisms of pain relief by SCS, we utilized the spared nerve injury model. ⋯ The effect was cumulative with a greater reversal by the fourth treatment when compared to the first treatment. Treatment with 100Hz, 250Hz or sham SCS had no significant effect on the decreased withdrawal threshold of the paw or muscle that normally occurs after nerve injury. In conclusion, SCS at 4Hz and 60Hz was more effective in reducing hyperalgesia than higher frequencies of SCS (100Hz and 250Hz); and repeated treatments result in a cumulative reduction in hyperalgesia.