Articles: hyperalgesia.
-
Characterization of a model of chronic orofacial hyperalgesia in the rat: contribution of NA(V) 1.8.
The purpose of this study was to develop and characterize a model of orofacial inflammatory hyperalgesia. Injection of complete Freund's adjuvant (CFA) into the upper lip/whisker pad of the rat produced significant and long-lasting thermal (> or =14 days) and mechanical (> or =28 days) hyperalgesia in the area of CFA injection. Both indomethacin and morphine, given systemically, significantly attenuated thermal hyperalgesia; the effect of morphine was shown to be opioid receptor-mediated. We also examined the contribution of the tetrodotoxin-resistant voltage-gated sodium channel Na(v)1.8 in CFA-produced orofacial mechanical hypersensitivity. Na(v)1.8 mRNA was increased > or =2.5-fold in trigeminal ganglion neurons 1 and 2 weeks after CFA treatment, and Na(v)1.8 protein was increased in the infraorbital nerve over a similar time course. The changes observed were time-dependent and had returned to baseline when examined 2 months after inflammation; there were no changes in Na(v)1.9 mRNA in trigeminal ganglion neurons after CFA treatment. In support of this, Na(v)1.8 antisense oligodeoxynucleotide treatment significantly attenuated CFA-produced mechanical hypersensitivity. These results document development of a model of inflammatory orofacial hyperalgesia, which, consistent with other reports, indicate a contribution of tetrodotoxin-resistant, voltage-gated sodium channel Na(v)1.8. ⋯ Orofacial hypersensitivity develops postoperatively as a routine course of orofacial surgery, and mechanical allodynia is characteristic of temporomandibular joint disorder. The results described in this report are novel with respect to the duration of orofacial hypersensitivity produced and suggest that pharmacological targeting of the voltage-gated sodium channel Na(v)1.8 may be useful in managing hypersensitivity.
-
Hua Xi Kou Qiang Yi Xue Za Zhi · Jun 2008
[Study of the influence of emotion stress on mechanical hyperalgesia of masseter muscles in rats].
To study the influence of emotion stress on mechanical hyperalgesia of masseter muscles in rats through the equipment of communication box. ⋯ It is suggested that emotion stress can lead to the hyperalgesia of masseter muscles and antidepressant drug can lower the hyperalgsia resulted of emotion stress.
-
We describe the characterization of a partial saphenous nerve injury (PSNI) model of neuropathic pain in the mouse. PSNI resulted in significant mechanical allodynia in mice with no behavioural change to temperature stimulation. ⋯ In galanin knockout mice, PSNI failed to induce allodynia as previously reported in other neuropathic pain models. PSNI can be used to simultaneously study behavioural and neurophysiological changes in wild-type and transgenic mice.
-
The contralateral pain-related behavioral and immunohistochemical changes after hemilateral spinal nerve injury in rats were investigated. ⋯ These results suggest that contralateral mechanical allodynia induced by hemilateral spinal nerve injury is associated with upregulation of satellite cells and TNF-alpha in the contralateral DRG. In addition, our results suggest that spinal astrocytes play an important role in these contralateral changes.
-
We determined if cutaneous hyperalgesia and pain-induced c-Fos overexpression in the spinal cord produced by repeated forced swimming (FS) stress in the rat were related to changes in GABA neurotransmission by studying spinal release of GABA and the effect of positive modulation of GABA-A receptors with diazepam. Male rats were daily submitted to 10-20 min of either forced swimming or sham swimming (SS) for 3 consecutive days. Two days later, spinal GABA release was estimated by in vivo microdialysis. ⋯ In FS rats, diazepam did not have effect on GABA release but reduced pain scores and overexpression of c-Fos whereas flumazenil (0.1 mg/kg, i.p.), an antagonist of the benzodiazepine binding site, reversed these effects. When diazepam was given only 1h before the formalin test, it slightly but significantly reduced pain scores during late phase in FS rats but not in SS rats. In conclusion, stress-induced reduction in GABA-A receptor activation is involved in the development of FS stress-induced hyperalgesia.