Articles: hyperalgesia.
-
Although participation of opioids in antinociception induced by cannabinoids has been documented, there is little information regarding the participation of cannabinoids in the antinociceptive mechanisms of opioids. The aim of the present study was to determine whether endocannabinoids could be involved in peripheral antinociception induced by activation of mu-, delta- and kappa-opioid receptors. ⋯ Our results provide evidence for the involvement of endocannabinoids, in the peripheral antinociception induced by the mu-opioid receptor agonist morphine. The release of cannabinoids appears not to be involved in the peripheral antinociceptive effect induced by kappa- and delta-opioid receptor agonists.
-
The antinociceptive effects of the endocannabinoids (ECs) are enhanced by inhibiting catabolic enzymes such as fatty acid amide hydrolase (FAAH). The physiological relevance of the metabolism of ECs by other pathways, such as cyclooxygenase-2 (COX2) is less clear. To address this question we compared the effects of local inhibition of FAAH versus COX2 (URB597 and nimesulide, respectively) on inflammatory hyperalgesia and levels of endocannabinoids and related molecules in the hindpaw. ⋯ GW6471, but not a PPARgamma antagonist, blocked the inhibitory effects of nimesulide and URB597 on hyperalgesia. Our data suggest that both COX2 and FAAH play a role in the metabolism of endocannabinoids and related molecules. The finding that PPARalpha antagonism blocked the inhibitory effects of nimesulide and URB597 suggests that PPARalpha contributes to their antinociceptive effects in the carrageenan model of inflammatory hyperalgesia.
-
The function of the isolectin B4 (IB4+)-binding and GDNF-dependent Ret (Ret+)-expressing non-peptidergic subpopulation of nociceptors remain poorly understood. We demonstrate that acute administration of GDNF sensitizes nociceptors and produces mechanical hyperalgesia in the rat. Intrathecal IB4-saporin, a selective toxin for IB4+/Ret+-nociceptors, attenuates GDNF but not NGF hyperalgesia. ⋯ Intrathecal administration of antisense oligodeoxynucleotides targeting mRNA for versican, the molecule that renders the Ret-expressing nociceptors IB4-positive (+), also attenuated GDNF but not NGF hyperalgesia, as did ADAMTS-4, a matrix metalloprotease known to degrade versican. Finally, inhibitors for all five signaling pathways known to be activated by GDNF at GFRa1/Ret: PLCc, CDK5, PI3K,MAPK/ERK and Src family kinases, attenuated GDNF hyperalgesia. Our results demonstrate a role of the non-peptidergic nociceptors in pain produced by the neurotrophin GDNF and suggest that the IB4-binding protein versican functions in the expression of this phenotype.
-
Activation of the spinal phospholipase A(2) (PLA(2)) -cyclooxygenase (COX) -prostaglandin signaling pathway is widely implicated in nociceptive processing. Although the role of spinal COX isoforms in pain signal transmission has been extensively characterized, our knowledge of PLA(2) enzymes in this cascade is limited. Among all PLA(2) groups, cytosolic calcium-dependent PLA(2) group IVA (cPLA(2)IVA) appears to be the predominant PLA(2) enzyme in the spinal cord. ⋯ Immunocytochemistry confirmed that the reduction occurred in neurons and oligodendrocytes. cPLA(2)IVA AS did not alter expression of several other PLA(2) isoforms, such as secretory PLA(2) (groups IIA and V) and calcium-independent PLA(2) (group VI), indicating that the AS was specific for cPLA(2)IVA. This selective knockdown of spinal cPLA(2)IVA did not change acute nociception (i.e. paw withdrawal thresholds to acute thermal stimuli and intradermal formalin-induced first phase flinching), however, it significantly attenuated formalin-induced hyperalgesia (i.e. second phase flinching behavior), which reflects spinal sensitization. Thus the present findings suggest that cPLA(2)IVA may specifically participate in spinal nociceptive processing.
-
Endothelin-1 (ET-1) plays an important role in peripheral pain processing. However, the mechanisms of the nociceptive action of ET-1 have not been fully elucidated. In this study, we investigated the contribution of transient receptor potential vanilloid subfamily 1 (TRPV1) to ET-1-induced thermal hyperalgesia. ⋯ In addition, Western blot analysis was also performed to confirm ET-1-induced phosphorylation of TRPV1. Incubation of ET-1 and intraplantar ET-1 evoked phosphorylation of TRPV1 in HEK293 cells expressing TRPV1 and ET(A) and the skin, respectively. These results suggest that the sensitization of TRPV1 activity through an ET(A)-PKC pathway contributes to ET-1-induced thermal hyperalgesia.