Articles: hyperalgesia.
-
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. ⋯ Indeed, neutrophils stimulated in vitro with IL-1beta produced PGE(2), and IL-1beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.
-
Arch Phys Med Rehabil · Apr 2008
Comparative StudyModulation between high- and low-frequency transcutaneous electric nerve stimulation delays the development of analgesic tolerance in arthritic rats.
To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. ⋯ These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Apr 2008
Role for NMDA receptors in visceral nociceptive transmission in the anterior cingulate cortex of viscerally hypersensitive rats.
We have identified colorectal distension (CRD)-responsive neurons in the anterior cingulate cortex (ACC) and demonstrated that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization. In the present study, we confirmed that rostral ACC neurons of sensitized rats [induced by chicken egg albumin (EA)] exhibit enhanced spike responses to CRD. Simultaneous in vivo recording and reverse microdialysis of single ACC neurons showed that a low dose of glutamate (50 microM) did not change basal ACC neuronal firing in normal rats but increased ACC neuronal firing in EA rats from 18 +/- 2 to 32 +/- 3.8 impulses/10 s. ⋯ ACC responses to CRD are enhanced in viscerally hypersensitive rats. The enhancement of excitatory glutamatergic transmission in the ACC appears to mediate this response. Furthermore, NMDA receptors mediate ACC synaptic responses after the induction of visceral hypersensitivity.
-
Comparative Study
Exacerbated mechanical allodynia in rats with depression-like behavior.
Although a clinical connection between pain and depression has long been recognized, how these two conditions interact remains unclear. Here we report that both mechanical allodynia and depression-like behavior were significantly exacerbated after peripheral nerve injury in Wistar-Kyoto (WKY) rats, a genetic variation of Wistar rats with demonstrable depression-like behavior. ⋯ Moreover, there was a lower plasma melatonin concentration and a lower melatonin receptor expression in the anterior cingular cortex in WKY rats than in Wistar rats. These results suggest that there exists a reciprocal relationship between mechanical allodynia and depression-like behavior and the melatoninergic system in the anterior cingular cortex might play an important role in the interaction between pain and depression.