Articles: hyperalgesia.
-
Molecular pharmacology · Oct 2006
Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms.
Molecular mechanisms underlying diabetes-induced painful neuropathy are poorly understood. We have demonstrated, in rats with streptozotocin-induced diabetes, that mechanical hyperalgesia, a common symptom of diabetic neuropathy, was correlated with an early increase in extracellular signal-regulated protein kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) phosphorylation in the spinal cord and dorsal root ganglion at 3 weeks after induction of diabetes. This change was specific to hyperalgesia because nonhyperalgesic rats failed to have such an increase. ⋯ To characterize the cellular events upstream of MAPKs, we have examined the role of the NMDA receptor known to be implicated in pain hypersensitivity. The prolonged blockade of this receptor during 7 days by (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK801; 5 microg/rat/day, i.t.), a noncompetitive NMDA receptor antagonist, reversed hyperalgesia developed by diabetic rats and blocked phosphorylation of all MAPKs. These results demonstrate for the first time that NMDA receptor-dependent phosphorylation of MAPKs in spinal cord neurons and microglia contribute to the establishment and longterm maintenance of painful diabetic hyperalgesia and that these kinases represent potential targets for pain therapy.
-
Chronic fibromyalgia (FM) pain is prevalent (estimated as high as 13%), predominantly affects women, and is associated with a variety of focal pain conditions. Ongoing FM pain is referred to deep tissues and is described as widespread but usually is maximally located within a restricted region such as the shoulders. Palpation of deep tissues reveals an enhanced nociceptive sensitivity that is not restricted to regions of clinical pain. ⋯ Thus, it appears that central mechanisms of FM pain are dependent on abnormal peripheral input(s) for development and maintenance of this condition. A substantial literature defines peripheral-CNS-peripheral interactions that are integral to FM pain. These reciprocal actions and related phenomena of relevance to FM pain are reviewed here, leading to suggestions for testing of therapeutic approaches.
-
Spinal glial activation and consequent interleukin-1 (IL-1) release are implicated in pain facilitation induced by inflammation/damage to skin and peripheral nerves. It is unclear whether pain facilitation induced at deep tissue sites also depends on these. We investigated whether spinal IL-1 and/or glial activation mediates bilateral allodynia induced by repeated unilateral intramuscular injections of acidic saline to rats. Given the prominent role of spinal IL-1 in various bilateral pain models, we predicted that intrathecal IL-1 receptor antagonist (IL-1ra) would suppress bilateral allodynia in this model as well. Surprisingly, neither single nor repeated intrathecal injections of IL-1ra affected allodynia, measured by the von Frey test, induced by prior intramuscular acidic saline compared with vehicle-injected controls. In addition, we tested the effect of 2 additional intrathecal manipulations that are broadly efficacious in suppressing glially mediated pain facilitation: (1) a glial metabolic inhibitor (fluorocitrate) and (2) the anti-inflammatory cytokine, interleukin-10 (IL-10). Like IL-1ra, fluorocitrate and IL-10 each failed to reverse allodynia. Finally, we observed no significant activation of glial cells, as assessed by immunohistochemistry of glial activation markers, in the lumbar spinal cord in response to intramuscular acidic saline. Taken together, the present data suggest that acidic saline-induced bilateral allodynia is created independently of glial activation. ⋯ From converging lines of evidence, the current studies suggest that persistent bilateral allodynia induced by repeated intramuscular acidic saline is not mediated by spinal IL-1 and/or spinal glial activation. As such, this might represent the first evidence for pain facilitation occurring in the absence of glial involvement.
-
The present study investigated the role of central metabotropic glutamate receptors (mGluRs) in interleukin-1beta (IL-1beta)-induced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Experiments were carried out on male Sprague-Dawley rats weighing 230 to 280 g. After administration of 0.01, 0.1, 1, or 10 pg of IL-1beta into a subcutaneous area of the vibrissa pad, we examined the withdrawal behavioral responses produced by 10 successive trials of an air-puff ramp pressure applied ipsilaterally or contralaterally to the IL-1beta injection site. Subcutaneous injection of IL-1beta produced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Intracisternal administration of CPCCOEt, a mGluR1 antagonist, or MPEP, a mGluR5 antagonist, reduced IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia. Intracisternal administration of APDC, a group II mGluR agonist, or L-AP4, a group III mGluR agonist, reduced both IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia. The antiallodynic effect, induced by APDC or L-AP4, was blocked by intracisternal pretreatment with LY341495, a group II mGluR antagonist, or CPPG, a group III mGluR antagonist. These results suggest that groups I, II, and III mGluRs differentially modulated IL-1beta-induced mechanical allodynia, as well as mirror-image mechanical allodynia, in the orofacial area. ⋯ Central group I mGluR antagonists and groups II and III mGluR agonists modulate IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Therefore, the central application of group I mGluR antagonists or groups II and III mGluR agonists might be of therapeutic value in treating pain disorder.
-
Incisional pain remains underevaluated and undermanaged while evidence is growing that perioperative treatments strongly influence patients' outcome. The present review examines the recent developments in mechanisms underlying perioperative pain and questions current understanding of incisional pain features observed in patients. ⋯ Experimental studies and recent clinical trials using objective measures of sensory processing sensitization induced by surgical incision have shown the importance of hyperalgesia in perioperative pain. Effective perioperative block of nociceptive inputs from the wound as well as use of antihyperalgesic and analgesic drugs in combination seem the best way to control postoperative pain and specifically to prevent central sensitization.