Articles: hyperalgesia.
-
Hypersensitivity to mechanical stimulation is a well documented symptom of neuropathic pain, for which there is currently no effective therapy. Src-family kinases (SFKs) are involved in proliferation and differentiation and in neuronal plasticity, including long-term potentiation, learning, and memory. Here we show that activation of SFKs induced in spinal cord microglia is crucial for mechanical hypersensitivity after peripheral nerve injury. ⋯ In contrast, there was no change in SFK phosphorylation in primary sensory neurons, and PP2 did not decrease the induction of transient receptor potential ion channel TRPV1 and TRPA1 in sensory neurons. Together, these results demonstrate that SFK activation in spinal microglia contributes to the development of mechanical hypersensitivity through the ERK pathway. Therefore, preventing the activation of the Src/ERK signaling cascade in microglia might provide a fruitful strategy for treating neuropathic pain.
-
Nerve growth factor (NGF) has been implicated as an effector of inflammatory pain because it sensitizes primary afferents to noxious thermal, mechanical, and chemical [e.g., capsaicin, a transient receptor potential vanilloid receptor 1 (TRPV1) agonist] stimuli and because NGF levels increase during inflammation. Here, we report the ability of glial cell line-derived neurotrophic factor (GDNF) family members artemin, neurturin and GDNF to potentiate TRPV1 signaling and to induce behavioral hyperalgesia. Analysis of capsaicin-evoked Ca2+ transients in dissociated mouse dorsal root ganglion (DRG) neurons revealed that a 7 min exposure to GDNF, neurturin, or artemin potentiated TRPV1 function at doses 10-100 times lower than NGF. ⋯ A corresponding increase in mRNA for the artemin coreceptor GFRalpha3 (for GDNF family receptor alpha) was seen in DRG, and GFRalpha3 immunoreactivity was widely colocalized with TRPV1 in epidermal afferents. Finally, hindpaw injection of artemin, neurturin, GDNF, or NGF produced acute thermal hyperalgesia that lasted up to 4 h; combined injection of artemin and NGF produced hyperalgesia that lasted for 6 d. These results indicate that GDNF family members regulate the sensitivity of thermal nociceptors and implicate artemin in particular as an important effector in inflammatory hyperalgesia.
-
Controlled Clinical Trial
Generalized hyperalgesia in patients with chronic tension-type headache.
Increased pain sensitivity in the central nervous system may play an important role in the pathophysiology of chronic tension-type headache (CTTH). Previous studies using pain thresholds as a measure of central pain sensitivity have yielded inconsistent results and only a few studies have examined perception of muscle pain without involvement of adjacent tissues. It has been suggested that suprathreshold testing might be more sensitive than threshold measurements in evaluation of central hyperexcitability in CTTH. ⋯ The degree of temporal summation of muscular and cutaneous pain tended to be higher in patients than in controls but the differences were not statistically different. This study provides evidence for generalized increased pain sensitivity in CTTH and strongly suggests that pain processing in the central nervous system is abnormal in this disorder. Furthermore, it indicates that suprathreshold stimulation is more sensitive than recording of pain thresholds for evaluation of generalized pain perception.
-
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder seen by gastroenterologists. We discuss some recent evidence for potential neural mechanisms that could contribute to somatic and visceral hyperalgesia in IBS patients. The combination of research studies of human IBS patients and studies of rats with delayed rectal hypersensitivity after recovery from experimentally induced neonatal colitis strongly suggests a mechanism wherein both primary visceral hyperalgesia and secondary widespread cutaneous hyperalgesia are dynamically maintained by tonic impulse input from the noninflamed colon and/or rectum. The secondary hyperalgesia is likely to be at least partly related to sensitization of spinal cord dorsal horn neurons and in this respect might be similar to other persistent pain conditions such as fibromyalgia and complex regional pain syndrome. ⋯ Pain in irritable bowel syndrome is likely to be at least partly maintained by peripheral impulse input from the colon/rectum and central sensitization, yet it is also highly modifiable by psychological factors such as nocebo and placebo effects. A synergistic interaction might occur between psychological factors and abnormal afferent processing.