Articles: hyperalgesia.
-
Inflammation or injury of peripheral tissue causes release of chemical mediators, including 5-hydroxytryptamine (5-HT), which is involved in the facilitation of nociceptive transmission and the induction of hyperalgesia. The present study examined the effect of a selective 5-HT2A receptor antagonist, sarpogrelate, on hyperalgesia and allodynia induced by thermal injury in rats. Mild thermal injury to the hindpaw produces thermal hyperalgesia in the injured area (primary thermal hyperalgesia) and mechanical allodynia in sites adjacent to the primary area (secondary mechanical allodynia). ⋯ The tissue concentration of 5-HT was measured using microdialysis. Concentrations of 5-HT increased after thermal injury in both primary and secondary areas, and the increase was not attenuated by pretreatment with sarpogrelate (100 mg/kg, i.p.). These data suggest that 5-HT released in peripheral tissues after thermal injury sensitizes primary afferent neurons and produces mechanical allodynia and thermal hyperalgesia via peripheral 5-HT2A receptors.
-
The transient receptor potential vanilloid 4 (TRPV4) is a primary afferent transducer that plays a crucial role in neuropathic hyperalgesia for osmotic and mechanical stimuli, as well as in inflammatory mediator-induced hyperalgesia for osmotic stimuli. In view of the clinical importance of mechanical hyperalgesia in inflammatory states, the present study investigated the role of TRPV4 in mechanical hyperalgesia induced by inflammatory mediators and the second-messenger pathways involved. Intradermal injection of either the inflammogen carrageenan or a soup of inflammatory mediators enhanced the nocifensive paw-withdrawal reflex elicited by hypotonic or mechanical stimuli in rat. ⋯ Additional behavioral observations suggested that multiple mediators are necessary to achieve sufficient activation of the cAMP pathway to engage the TRPV4-dependent mechanism of hyperalgesia. In addition, direct activation of protein kinase A or protein kinase C epsilon, two pathways that mediate inflammation-induced mechanical hyperalgesia, also induced hyperalgesia for both hypotonic and mechanical stimuli that was decreased by TRPV4 antisense and absent in TRPV4(-/-) mice. We conclude that TRPV4 plays a crucial role in the mechanical hyperalgesia that is generated by the concerted action of inflammatory mediators present in inflamed tissues.
-
Br J Clin Pharmacol · Apr 2006
Randomized Controlled TrialHyperalgesia induced by cutaneous freeze injury for testing analgesics in healthy volunteers.
The early phases of the clinical development of new analgesic agents are severely hindered by a lack of reliable sensitive tests based on experimental pain models. The aim of this study was to assess the ability of a localized hyperalgesia model induced by cutaneous freeze injury to evaluate the pharmacodynamic profile of weak analgesic agents in healthy volunteers. ⋯ Cutaneous freeze injury coupled with a von Frey electronic device to assess the mechanical pain threshold is a convenient model that causes no discomfort. The improved sensitivity and stability of this experimental model of hyperalgesia over three consecutive days make it a useful tool for evaluating the efficacy and detecting the potential sites of action of analgesic agents such as nonsteroidal anti-inflammatory drugs in healthy human subjects.
-
Serotonin (5-hydroxtryptamine, 5-HT) is an important molecule in pain processing and modulation. Whether 5-HT has an analgesic or hyperalgesic action depends on the cell type and type of receptor it acts on. ⋯ Furthermore, genetic alterations in the 5-HT system may influence the susceptibility to migraine. In the central nervous system, 5-HT is involved in descending inhibition, but facilitatory serotonergic pathways may be functionally more important.