Articles: hyperalgesia.
-
J. Pharmacol. Exp. Ther. · Aug 2004
Comparative Study3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid Cb1/Cb2 receptor partial agonist with antihyperalgesic and antiallodynic effects.
3-[2-Cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074) is a novel, selective cannabinoid CB(1)/CB(2) receptor ligand (K(i) = 55.4, 48.3, and 45.5 nM at rat and human cannabinoid CB(1) and human CB(2) receptors, respectively), with partial agonist properties at these receptors in guanosine 5-[gamma(35)S]-thiophosphate triethyl-ammonium salt ([(35)S]GTPgammaS) binding assays. In rats, generalization of BAY 59-3074 to the cue induced by the cannabinoid CB(1) receptor agonist (-)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 38-7271) in a drug discrimination procedure, as well as its hypothermic and analgesic effects in a hot plate assay, were blocked by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR 141716A). BAY 59-3074 (0.3-3 mg/kg, p.o.) induced antihyperalgesic and antiallodynic effects against thermal or mechanical stimuli in rat models of chronic neuropathic (chronic constriction injury, spared nerve injury, tibial nerve injury, and spinal nerve ligation models) and inflammatory pain (carrageenan and complete Freund's adjuvant models). ⋯ Uptitration from 1 to 32 mg/kg p.o. (doubling of daily dose every 4th day) prevented the occurrence of such side effects, whereas antihyperalgesic and antiallodynic efficacy was maintained/increased. No withdrawal symptoms were seen after abrupt withdrawal following 14 daily applications of 1 to 10 mg/kg p.o. It is concluded that BAY 59-3074 may offer a valuable therapeutic approach to treat diverse chronic pain conditions.
-
Comparative Study
Intrathecal interleukin-1beta administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord.
The effect of the pro-inflammatory cytokine interleukin-1beta (IL-1beta) on the inducible nitric oxide synthase-nitric oxide (iNOS-NO) cascade in nociceptive signal transduction was examined in the intact rat spinal cord. All rats were implanted with an intrathecal (i.t.) catheter; some were also implanted with an i.t. microdialysis probe. The paw withdrawal latency to radiant heat was used to assess thermal hyperalgesia. ⋯ Neither 1400W nor artificial CSF (aCSF) affected the thermal nociceptive threshold and NO production. These results demonstrate that i.t. administration of IL-1beta induced thermal hyperalgesia by activating the iNOS-NO cascade in the rat spinal cord. On the basis of the present findings, we suggest that i.t. administration of iNOS inhibitors may have potential in the treatment of inflammatory and neuropathic pain syndromes.
-
Comparative Study
Mechanical allodynia and thermal hyperalgesia upon acute opioid withdrawal in the neonatal rat.
Upon withdrawal from opioids many patients experience a heightened sensitivity to stimuli and an exaggerated pain response. We present evidence that neonatal rats exhibit allodynia and hyperalgesia on acute opiate withdrawal. Postnatal 7 and 21 day rats were used to approximately model a full term human infant and a human child, respectively. ⋯ Spontaneous and precipitated withdrawal from a single acute administration of morphine produced mechanical allodynia and thermal hyperalgesia in postnatal day 7 rats and mechanical allodynia in postnatal day 21 rats. A higher dose of morphine was required to produce mechanical allodynia in postnatal day 21 versus 7 rats but this increase was independent of the analgesic efficacy of morphine at these two ages. The present work illustrates the need to examine the phenomenon of hypersensitivity upon opioid withdrawal in the human pediatric population.
-
Comparative Study
Tissue monocytes/macrophages in inflammation: hyperalgesia versus opioid-mediated peripheral antinociception.
Opioid-containing leukocytes migrate to peripheral sites of inflammation. On exposure to stress, opioid peptides are released, bind to opioid receptors on peripheral sensory neurons, and induce endogenous antinociception. In later stages of Freund's complete adjuvant-induced local inflammation, monocytes/macrophages are a major opioid-containing leukocyte subpopulation, but these cells also produce proalgesic cytokines. In this study, the role of tissue monocytes/macrophages in hyperalgesia and in peripheral opioid-mediated antinociception was investigated. ⋯ Partial depletion of tissue monocytes/macrophages impairs peripheral endogenous opioid-mediated antinociception without affecting hyperalgesia.
-
Comparative Study
Antihyperalgesic effects of cizolirtine in diabetic rats: behavioral and biochemical studies.
Although clinically well controlled at the metabolic level, type I diabetes resulting from an insufficient insulin secretion remains the cause of severe complications. In particular, diabetes can be associated with neuropathic pain which fails to be treated by classical analgesics. In this study, we investigated the efficacy of a novel non opioid analgesic, cizolirtine, to reduce mechanical hyperalgesia associated with streptozotocin (STZ)-induced diabetes, in the rat. ⋯ Measurements of the spinal release of calcitonin gene-related peptide (CGRP) through intrathecal perfusion under halothane-anesthesia showed that acute administration of cizolirtine (80 mg/kg, i.p.) significantly diminished (-36%) the peptide outflow in diabetic rats suffering from neuropathic pain. This effect as well as the antihyperalgesic effect of cizolirtine were prevented by the alpha(2)-adrenoreceptor antagonist idazoxan (2 mg/kg, i.p.). These data suggest that the antihyperalgesic effect of cizolirtine in diabetic rats suffering from neuropathic pain implies an alpha(2)-adrenoceptor-dependent presynaptic inhibition of CGRP-containing primary afferent fibers.