Articles: hyperalgesia.
-
Previous findings indicate that the brain stem descending system becomes more active in modulating spinal nociceptive processes during the development of persistent pain. The present study further identified the supraspinal sites that mediate enhanced descending modulation of behavior hyperalgesia and dorsal horn hyperexcitability (as measured by Fos-like immunoreactivity) produced by subcutaneous complete Freund's adjuvant (CFA). Selective chemical lesions were produced in the nucleus raphe magnus (NRM), the nuclei reticularis gigantocellularis (NGC), or the locus coeruleus/subcoeruleus (LC/SC). ⋯ The persistent hyperalgesia and neuronal hyperexcitability may be mediated in part by a descending pain facilitatory system involving NGC. Thus, the intensity of perceived pain and hyperalgesia is fine-tuned by descending pathways. The imbalance of these modulating systems may be one mechanism underlying variability in acute and chronic pain conditions.
-
From a classical viewpoint, tolerance to analgesic effects of opiates refers to the decreased effectiveness of a given opiate following its repeated use. Despite much research, it has not been conclusively demonstrated in vivo that functional changes observed at the opioid receptor level in the responsiveness to opiates account for development of tolerance. An alternative hypothesis is that opioid receptors remain operative following repeated opiate administration but that opioid receptor activation rapidly induces a prolonged increase in pain sensitivity which opposes the predominant opiate analgesic effect following repeated opiate administration. ⋯ Herein we report that repeated once-daily heroin injections induced a gradual lowering of the nociceptive threshold which progressively masked a sustained heroin analgesic functional effect. MK-801 prevented such opiate-induced allodynia and thereby prevented development of an apparent decrease in the effectiveness of heroin. These results indicate that intermittent heroin administration induced a persistent increase in the basal pain sensitivity which, if not taken into account gives the impression of less analgesia, i.e. apparent tolerance.
-
Previously, the authors developed and characterized a rat model for postoperative pain to learn more about pain produced by incisions. In this study, the responses to heat and mechanical stimuli were evaluated directly on or adjacent to the incision and at varying distances from the incision. ⋯ Robust primary hyperalgesia to punctate and blunt mechanical stimuli was present. Hyperalgesia distant to the wound, or secondary hyperalgesia, occurred in response to punctate mechanical stimuli, was short-lived, and required greater forces. These results suggest that the most persistent pain behaviors in this model are largely primary hyperalgesia.
-
Enadoline is a highly selective and potent kappa-opioid receptor agonist. This report describes and compares the activities of enadoline and morphine in a rat model of postoperative pain. A 1 cm incision through the muscle and skin of the plantar surface of the right hind paw induced thermal hyperalgesia as well as static and dynamic allodynia lasting at least 2 days. ⋯ Morphine dose-dependently (1-6 mg/kg, s.c.) potentiated isoflurane-induced sleeping time and respiratory depression in the rat. However, whilst enadoline also (1-1000 microg/kg, i.v.) potentiated isoflurane-induced sleeping time, it did not cause respiratory depression. It is suggested that enadoline may possess therapeutic potential as a pre-emptive antihyperalgesic and antiallodynic agent.
-
Although intrathecally administered senktide, an agonist at the neurokinin3 receptor, attenuates withdrawal responses to noxious stimuli in the restrained animal, senktide increases motor neuron activity in spinal cords of neonatal rats and facilitates the electrically-evoked nociceptive flexor reflex in the adult rat. The present study examined the effects of intrathecal administration of senktide on withdrawal responses to noxious thermal and mechanical stimuli in awake, unrestrained, adult rats. Intrathecal administration of senktide (10 nmol) in chronically catheterized rats did not alter the responses elicited by a noxious mechanical stimulus (508 mN, von Frey monofilament). ⋯ Intravenous hexamethonium, a ganglionic nicotinic receptor antagonist, similarly increased paw temperature without decreasing withdrawal latency to radiant heat. Thus, the increased skin temperature associated with intrathecal senktide was insufficient to account for the thermal hyperalgesia observed. Collectively, the present work demonstrates that NK3 receptors mediate thermal but not mechanical hyperalgesia through a pathway that involves the production of NO.