Articles: hyperalgesia.
-
Clinical Trial
A psychophysical study of secondary hyperalgesia: evidence for increased pain to input from nociceptors.
Substantial evidence suggests that the hyperalgesia to mechanical stimuli that occurs in an area of uninjured skin surrounding a site of injury (area of secondary hyperalgesia) arises from activity in low-threshold mechanoreceptors (LTMs). In this study, we have investigated if activity in mechanically sensitive nociceptors also contributes to this secondary hyperalgesia. It is known that all woollen fabrics excite LTMs, but that only the prickly ones activate mechanically sensitive nociceptors. ⋯ On the other hand, little if any pain was evoked by the fabrics when applied to normal skin, but substantial pain was produced by all fabrics when applied to hyperalgesic skin. The pain ratings were graded with the ratings of prickle so that fabrics that evoked the greatest prickle also evoked significantly more pain. The magnitude of pain increased linearly with prickle sensation; the slope of this regression function increased substantially in hyperalgesic skin.(ABSTRACT TRUNCATED AT 250 WORDS)
-
1. Intrathecal (i.t.) administration of prostaglandin E2 (PGE2) to conscious mice induced allodynia, a state of discomfort and pain evoked by innocuous tactile stimuli, and hyperalgesia as assessed by the hot plate test. We characterized prostaglandin E receptor subtypes (EP1-3) involved in these sensory disorders by use of 7 synthetic prostanoid analogues. 2. ⋯ MB28767 (EP3)showed a monophasic hyperalgesic action over a wide range of dosages at 50 pg-S5 Microg kg-1. Butaprost(EP2) induced hyperalgesia at doses higher than 50 ng kg-1.5. These results demonstrate that PGE2 may exert allodynia through the EP1-receptor and hyperalgesia through EP2- and EP3-receptors in the mouse spinal cord.
-
Brush-evoked pain (mechanical allodynia, dynamic mechanical hyperalgesia) is a hallmark of neuropathic and inflammatory pain states. Here we have examined the neural mechanisms that induce and maintain this component of mechanical hyperalgesia. The principle finding of these experiments is that the severity of brush-evoked pain correlates with the intensity of background pain in patients suffering from chronic painful neuropathies and in normal subjects with acute experimental chemogenic pain. ⋯ In those individuals, an increase of skin temperature produced a graded increase of their ongoing pain which was closely correlated (r = 0.94) with the level of brush-evoked pain. In the remaining five patients there was no heat hyperalgesia and consequently no aggravation of pain by increases of skin temperature. Nevertheless when the intensity of the background pain fluctuated spontaneously there were also parallel changes (r = 0.88) of the severity of brush-evoked pain.(ABSTRACT TRUNCATED AT 400 WORDS)
-
Comparative Study
The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat.
Activation of the N-methyl-D-aspartate (NMDA) receptor has been reported to be involved in the mechanisms that underlie thermal hyperalgesia produced by the intraplantar injection of carrageenan. As NMDA-mediated thermal hyperalgesia produced in models of acute and persistent pain have been reported to involve production of nitric oxide, we examined the role of nitric oxide in both the development and maintenance of the thermal hyperalgesia produced by the intraplantar injection of carrageenan. In addition, we examined the role of nitric oxide in the maintenance of the mechanical hyperalgesia produced by intraplantar injection of carrageenan. ⋯ In addition, the left hindpaw was significantly increased in size (diameter) compared with the right hindpaw. In these same rats, the intrathecal administration of saline, NG-nitro-L-arginine methyl ester (L-NAME; 2-200 nmol) or the inactive enantiomer, NG-nitro-D-arginine methyl ester (D-NAME; 200 nmol) did not produce any significant change in thermal nociceptive withdrawal latencies in the non-injected paw. However, administration of L-NAME (2-20 nmol), but not saline or D-NAME produced a dose dependent and reversible block of the thermal hyperalgesia for a period of up to 3 h.(ABSTRACT TRUNCATED AT 250 WORDS)
-
Pharmacol. Biochem. Behav. · May 1994
Evidence of a role for N-methyl-D-aspartate (NMDA) receptors in the facilitation of tail withdrawal after spinal transection.
Peripheral injury produces a characteristic excitation of spinal cord dorsal horn cells (wind-up) which is associated with a facilitation of spinal nociceptive reflexes (hyperalgesia). These phenomena are believed to be mediated by a trauma-induced increase in the release of excitatory amino acids (EAAs). A similar increase in the activity of dorsal horn neurons and spinal reflexes occurs after spinal transection. ⋯ However, both systemic and intrathecal ketamine significantly increased TF latencies in spinal, relative to intact rats. These results indicate that ketamine did not prevent the development of spinal reflex facilitation, but it selectively reduced this reaction once it was established in spinal rats. The data support an involvement of EAAs in reflex facilitation produced by spinal transection.