Articles: function.
-
Complex regional pain syndrome (CRPS) is characterized by inflammation and a failure of multimodal signal integration in the central nervous system (CNS). Central nervous system reorganization might account for sensory deficits, pain, and motor symptoms in CRPS, but it is not clear how motor control is affected by CNS mechanisms. The present study characterized the motor performance and related cortical activity of 16 CRPS patients and 16 control participants during the planning of visually guided unimanual grips, in patients with either the unaffected left or the affected right hand, and investigated resting-state sensorimotor coupling in MRI. ⋯ Fear of movement or individual pain scores contributed only marginally to the observed effects. The study suggests that changes in planning-related sensorimotor CNS regions may explain difficulties with force exertion and motor control in CRPS. Perspective : Functional changes in motor planning-related brain regions might indicate that feedback-enhanced functional motor training may be effective for CRPS rehabilitation.
-
The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. ⋯ Finally, α 6 subunit is expressed in humans. This receptor is found in CGRP + and P2X3 + primary afferent fibers but not astrocytes in the human spinal dorsal horn. Our results suggest that the spinal α 6 -containing GABA A receptor has a sex-specific antinociceptive role in neuropathic pain, suggesting that this receptor may represent an interesting target to develop a novel treatment for neuropathic pain.
-
The nucleus of the solitary tract (NTS) contains pro-opiomelanocortin (POMC) neurons that are 1 of the 2 major sources of β-endorphin in the brain. The functional role of these NTS POMC neurons in nociceptive and cardiorespiratory function is debated. We have shown that NTS POMC optogenetic activation produces bradycardia and transient apnoea in a working heart-brainstem preparation and chemogenetic activation with an engineered ion channel (PSAM) produced opioidergic analgesia in vivo. ⋯ Inhibiting NTS POMC neurons does not produce any effect on basal nociception but inhibits stress-induced analgesia (unlike inhibition of arcuate POMC neurons). Activation of NTS POMC neuronal populations in conscious mice did not cause respiratory depression, anxiety, or locomotor deficit (in open field) or affective preference. These findings indicate that NTS POMC neurons play a key role in the generation of endorphinergic endogenous analgesia and can also regulate cardiorespiratory function.
-
Immune checkpoint inhibitors are used more and more to treat several types of cancer, significantly extending cancer-free survival. However, concerns are growing about their toxic effects, which are many and varied. Endocrinopathies are some of the most frequently reported adverse effects, and thyroid dysfunction is the most common of these. Here, we review the incidence and severity of each immune checkpoint inhibitor-related endocrinopathy, possible factors related to toxicity risk, and principles of management.
-
Anesthesia and analgesia · May 2023
Optimal Positioning of Nasopharyngeal Temperature Probes in Infants and Children: A Prospective Cohort Study.
The nasopharynx is an easily accessible core-temperature monitoring site, but insufficient or excessive nasopharyngeal probe insertion can underestimate core temperature. Our goal was to estimate optimal nasopharyngeal probe insertion depth as a function of age. ⋯ Nasopharyngeal thermometers accurately measure core temperature, but only when probes are inserted a proper distance, which varies with age. As with much in pediatrics, nasopharyngeal thermometer insertion depths should be age appropriate.