Articles: sars-cov-2.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of human infections. One limitation to the evaluation of potential therapies and vaccines to inhibit SARS-CoV-2 infection and ameliorate disease is the lack of susceptible small animals in large numbers. ⋯ Passive transfer of a neutralizing monoclonal antibody reduced viral burden in the lung and mitigated inflammation and weight loss. The development of an accessible mouse model of SARS-CoV-2 infection and pathogenesis will expedite the testing and deployment of therapeutics and vaccines.
-
Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. ⋯ We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.
-
Review
Second Update for Anaesthetists on Clinical Features of COVID-19 Patients and Relevant Management.
The COVID-19 pandemic poses great challenges for healthcare workers around the world, including perioperative specialists. Previously, we provided a first overview of available literature on SARS-CoV-2 and COVID-19, relevant for anaesthetists and intensivists. ⋯ Furthermore, cardiovascular and nervous system involvement in COVID-19 are discussed, as well as considerations in diabetic patients. Lastly, the latest evidence on pharmacological treatment is summarised.
-
Antimicrob Resist Infect Control · Aug 2020
Letter Comparative StudyUse of medical face masks versus particulate respirators as a component of personal protective equipment for health care workers in the context of the COVID-19 pandemic.
Currently available evidence supports that the predominant route of human-to-human transmission of the SARS-CoV-2 is through respiratory droplets and/or contact routes. The report by the World Health Organization (WHO) Joint Mission on Coronavirus Disease 2019 (COVID-19) in China supports person-to-person droplet and fomite transmission during close unprotected contact with the vast majority of the investigated infection clusters occurring within families, with a household secondary attack rate varying between 3 and 10%, a finding that is not consistent with airborne transmission. ⋯ Moreover, prolonged use of particulate respirators may result in unintended harms. In conjunction with appropriate hand hygiene, personal protective equipment (PPE) used by health care workers caring for patients with COVID-19 must be used with attention to detail and precision of execution to prevent lapses in adherence and active failures in the donning and doffing of the PPE.
-
COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. ⋯ Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.