Articles: sars-cov-2.
-
Int J Environ Res Public Health · Aug 2020
ReviewThe Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting.
Over the past two decades, there have been two major outbreaks where the crossover of animal Betacoronaviruses to humans has resulted in severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In December 2019, a global public health concern started with the emergence of a new strain of coronavirus (SARS-CoV-2 or 2019 novel coronavirus, 2019-nCoV) which has rapidly spread all over the world from its origin in Wuhan, China. SARS-CoV-2 belongs to the Betacoronavirus genus, which includes human SARS-CoV, MERS and two other human coronaviruses (HCoVs), HCoV-OC43 and HCoV-HKU1. ⋯ Based on the current published evidence, herein we summarize the origin, genetics, epidemiology, clinical manifestations, preventions, diagnosis and up to date treatments of SARS-CoV-2 infections in comparison with those caused by SARS-CoV and MERS-CoV. Moreover, the possible impact of weather conditions on the transmission of SARS-CoV-2 is also discussed. Therefore, the aim of the present review is to reconsider the two previous pandemics and provide a reference for future studies as well as therapeutic approaches.
-
Oncology and therapy · Aug 2020
Cancer Treatment and Research During the COVID-19 Pandemic: Experience of the First 6 Months.
The coronavirus disease-2019 (COVID-19) pandemic has had a significant impact on patients with underlying malignancy. In this article, we summarize emerging data related to patients with cancer and COVID-19. ⋯ Mortality is significantly higher in patients with both cancer and COVID-19 compared with the overall COVID-19-positive population. The early months of the pandemic saw a decrease in cancer screening and diagnosis, as well as postponement of standard treatments, which could lead to excess deaths from cancer in the future.
-
The ongoing coronavirus disease 2019 pandemic has forced the clinical and scientific community to try drug repurposing of existing antiviral agents as a quick option against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Under this scenario, interferon (IFN) β-1a, whose antiviral potential is already known, and which is a drug currently used in the clinical management of multiple sclerosis, may represent as a potential candidate. In this report, we demonstrate that IFN-β-1a was highly effective in inhibiting in vitro SARS-CoV-2 replication at clinically achievable concentration when administered after virus infection.
-
Clinical manifestations of coronavirus disease 2019 (COVID-19) vary from asymptomatic virus shedding, nonspecific pharyngitis, to pneumonia with silent hypoxia and respiratory failure. Dendritic cells and macrophages are sentinel cells for innate and adaptive immunity that affect the pathogenesis of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). The interplay between SARS-CoV-2 and these cell types remains unknown. ⋯ Importantly, SARS-CoV-2 launched an attenuated interferon response in both cell types and triggered significant proinflammatory cytokine/chemokine expression in MDMs but not moDCs. Investigations suggested that this attenuated immune response to SARS-CoV-2 in moDCs was associated with viral antagonism of STAT1 phosphorylation. These findings may explain the mild and insidious course of COVID-19 until late deterioration.
-
The pandemic of coronavirus disease 2019 (COVID-19), with rising numbers of patients worldwide, presents an urgent need for effective treatments. To date, there are no therapies or vaccines that are proven to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ⋯ Herein we summarize the general features of SARS-CoV-2's molecular and immune pathogenesis and discuss available pharmacological strategies, based on our present understanding of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) infections. Finally, we outline clinical trials currently in progress to investigate the efficacy of potential therapies for COVID-19.