Articles: sars-cov-2.
-
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect health care providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. ⋯ Numerous methods of N95 decontamination exist; however, none are universally accessible. In this study, we describe an effective, standardized, and reproducible means of decontaminating N95 respirators using widely available materials. The N95 decontamination method described in this work will provide a valuable resource for hospitals, health care centers, and outpatient practices that are experiencing increasing shortages of N95 respirators due to the COVID-19 pandemic.
-
JMIR Pediatr Parent · Jun 2020
Digital Approaches to Remote Pediatric Health Care Delivery During the COVID-19 Pandemic: Existing Evidence and a Call for Further Research.
The global spread of the coronavirus disease (COVID-19) outbreak poses a public health threat and has affected people worldwide in various unprecedented ways, both personally and professionally. There is no question that the current global COVID-19 crisis, now more than ever, is underscoring the importance of leveraging digital approaches to optimize pediatric health care delivery in the era of this pandemic. In this perspective piece, we highlight some of the available digital approaches that have been and can continue to be used to streamline remote pediatric patient care in the era of the COVID-19 pandemic, including but not limited to telemedicine. ⋯ Future studies should consider evaluating the following research areas related to telemedicine and other digital approaches: cost-effectiveness and return on investment; impact on quality of care; balance in use and number of visits needed for the management of both acute illness and chronic health conditions; system readiness for further adoption in other settings, such as inpatient services, subspecialist consultations, and rural areas; ongoing user-centered evaluations, with feedback from patients, families, and health care providers; strategies to optimize health equity and address disparities in access to care related to race and ethnicity, socioeconomic status, immigration status, and rural communities; privacy and security concerns for protected health information with Health Insurance Portability and Accountability Act (HIPAA)-secured programs; confidentiality issues for some specific populations, especially adolescents and those in need of mental health services; early detection of exposure to violence and child neglect; and integration of training into undergraduate and graduate medical education and subspecialty fellowships. Addressing these research areas is essential to understanding the benefits, sustainability, safety, and optimization strategies of telemedicine and other digital approaches as key parts of modern health care delivery. These efforts will inform long-term adoption of these approaches with expanded dissemination and implementation efforts.
-
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. ⋯ For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.
-
The contamination of patients' surroundings by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains understudied. We sampled the surroundings and the air of six negative-pressure non-intensive care unit (non-ICU) rooms in a designated isolation ward in Chengdu, China, that were occupied by 13 laboratory-confirmed coronavirus disease 2019 (COVID-19) patients who had returned from overseas travel, including 2 asymptomatic patients. A total of 44 of 112 (39.3%) surface samples were positive for SARS-CoV-2 as detected by real-time PCR, suggesting extensive contamination, although all of the air samples were negative. ⋯ In particular, we found that asymptomatic COVID-19 patients contaminated their surroundings and therefore imposed risks for other people. Environment cleaning should be emphasized in negative-pressure rooms. The findings may be useful to guide infection control practice to protect health care workers.
-
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has motivated an intensive analysis of its molecular epidemiology following its worldwide spread. To understand the early evolutionary events following its emergence, a data set of 985 complete SARS-CoV-2 sequences was assembled. Variants showed a mean of 5.5 to 9.5 nucleotide differences from each other, consistent with a midrange coronavirus substitution rate of 3 × 10-4 substitutions/site/year. ⋯ IMPORTANCE The wealth of accurately curated sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its long genome, and its low substitution rate provides a relatively blank canvas with which to investigate effects of mutational and editing processes imposed by the host cell. The finding that a large proportion of sequence change in SARS-CoV-2 in the initial months of the pandemic comprised C→U mutations in a host APOBEC-like context provides evidence for a potent host-driven antiviral editing mechanism against coronaviruses more often associated with antiretroviral defense. In evolutionary terms, the contribution of biased, convergent, and context-dependent mutations to sequence change in SARS-CoV-2 is substantial, and these processes are not incorporated by standard models used in molecular epidemiology investigations.