Articles: sars-cov-2.
-
On March 11, 2020, the World Health Organization declared the worldwide spread of the infectious disease COVID-19, caused by a new strain of coronavirus, SARS-CoV-2, as a pandemic. Like in all other infectious diseases, the host immune system plays a key role in our defense against SARS-CoV-2 infection. However, viruses are able to evade the immune attack and proliferate and, in susceptible individuals, cause severe inflammatory response known as cytokine storm, particularly in the lungs. ⋯ Components of immune system, such as antibodies, can also be used to develop sensitive and specific diagnostic methods as well as novel therapeutic agents. In this review, we summarize our knowledge about how the host mounts immune responses to infection by SARS-CoV-2. We also describe the diagnostic methods being used for COVID-19 identification and summarize the current status of various therapeutic strategies, including vaccination, being considered for treatment of the disease.
-
Coronavirus disease 2019 (COVID-19) is a declared pandemic that is spreading all over the world at a dreadfully fast rate. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the pathogen of COVID-19, infects the human body using angiotensin-converting enzyme 2 (ACE2) as a receptor identical to the severe acute respiratory syndrome (SARS) pandemic that occurred in 2002-2003. ⋯ Here, we review transgenic mice that express human ACE2 in the airway and other epithelia and have shown to develop a rapidly lethal infection after intranasal inoculation with SARS-CoV, the pathogen of SARS. This literature review aims to present the importance of utilizing the human ACE2 transgenic mouse model to better understand the pathogenesis of COVID-19 and develop both therapeutics and vaccines.
-
In the frame of the coronavirus disease 2019 (COVID-19) pandemic, recent reports on SARS-CoV-2 potential neuroinvasion placed neurologists on increased alertness in order to assess early neurological manifestations and their potentially prognostic value for the COVID-19 disease. Moreover, the management of chronic neurological diseases, such as Multiple Sclerosis (MS), underwent guided modifications, such as an Extended Interval Dose (EID) of Disease-Modifying Treatment (DMT) administration, in order to minimize patients' exposure to the health system, thus reducing the risk of SARS-CoV-2 infection. In this review, we summarize existing evidence of key immune pathways that the SARS-CoV-2 modifies during COVID-19 and the relevant implication for MS and other autoimmune diseases with associated demyelination (such as Systemic lupus erythematosus and Antiphospholipid syndrome), including the context of potential neuroinvasion by SARS-Cov-2 and the alterations that DMT induces to the immune system. Moreover we hereby aim to provide an overview of the possible consequences that COVID-19 may carry for the Central Nervous System (CNS) in People with MS (PwMS) and other demyelinating diseases, which are likely to pose challenges for treating Neurologists with respect to the long-term disease management of these diseases.
-
As of March 31, 2020, the ongoing COVID-19 epidemic that started in China in December 2019 is now generating local transmission around the world. The geographic heterogeneity and associated intervention strategies highlight the need to monitor in real time the transmission potential of COVID-19. Singapore provides a unique case example for monitoring transmission, as there have been multiple disease clusters, yet transmission remains relatively continued. ⋯ The trajectory of the reproduction number in Singapore underscores the significant effects of successful containment efforts in Singapore, but it also suggests the need to sustain social distancing and active case finding efforts to stomp out all active chains of transmission.
-
Multicenter Study
Lactate dehydrogenase and susceptibility to deterioration of mild COVID-19 patients: a multicenter nested case-control study.
Coronavirus disease 2019 (COVID-19) has infected more than 4 million people within 4 months. There is an urgent need to properly identify high-risk cases that are more likely to deteriorate even if they present mild diseases on admission. ⋯ Advanced age and high LDH level are independent risk factors for exacerbation in mild COVID-19 patients. Among the mild patients, clinicians should pay more attention to the elderly patients or those with high LDH levels.