Articles: sars-cov-2.
-
SARS-CoV-2 shares nearly 80% of its' genomic sequence with SARS-CoV and MERS-CoV, both viruses known to cause respiratory symptoms and liver impairment. The emergence of pediatric cases of multisystem inflammatory syndrome related to the SARS-CoV-2 infection (PIM-TS) has raised concerns over the issue of hepatic damage and liver enzyme elevation in the critically ill pediatric population with COVID-19. Some retrospective cohorts and case series have shown various degrees of ALT/AST elevation in SARS-CoV-2 infections. ⋯ This liver damage was associated with higher levels of inflammatory markers, C-reactive protein (CRP), and pro-calcitonin. Proposed pathophysiological mechanisms include an uncontrolled exacerbated inflammatory response, drug-induced liver injury, direct viral infection and damage to cholangiocytes, hypoxic-ischemic lesions, and micro-thrombosis in the liver. Based on the physiopathological characteristics described, our group proposes a clinical protocol for the surveillance, evaluation, management, and follow-up of critically ill pediatric COVID-19 patients with liver damage.
-
Frontiers in immunology · Jan 2020
Review Comparative StudyComparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses.
The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health emergency. The outbreak of this virus has raised a number of questions: What is SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients infected with SARS-CoV-2? What are the risk factors for viral infection? What are the differences between this novel coronavirus and other coronaviruses? To answer these questions, we performed a comparative study of four pathogenic viruses that primarily attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a critical evaluation of the origin, genomic features, transmission, and pathogenicity of these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and medical experts to aid in curbing the pandemic's progression.
-
Frontiers in immunology · Jan 2020
Multicenter Study Clinical TrialDifferent Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases.
SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. ⋯ By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.
-
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that is responsible for the 2019-2020 pandemic. In this comprehensive review, we discuss the current published literature surrounding the SARS-CoV-2 virus. ⋯ Given that much of the information has been extrapolated from what we know about other coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), we identify and provide insight into controversies and research gaps for the current pandemic to assist with future research ideas. Finally, we discuss the global response to the coronavirus disease-2019 (COVID-19) pandemic and provide thoughts regarding lessons for future pandemics.
-
With the onset of the global pandemic in 2020 of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), there has been increasing research activity around certain disease-modifying drugs that are used for the management of inflammatory disorders such as rheumatoid arthritis, spondyloarthrosis, psoriatic arthritis, systemic lupus erythematosus, and inflammatory bowel disease for managing coronavirus symptoms. In the conditions mentioned, many people are on long-term treatment with agents including hydroxychloroquine, tumor necrosis factor alpha (TNFα) inhibitor drugs, other biologic agents such as monoclonal antibodies to IL-6 and Janus kinase inhibitors including baricitinib and tofacitinib, which are used to control inflammatory responses in their respective auto-immune condition. There is emerging data that immunomodulatory drugs could be protective at reducing certain features of SARS-CoV-2 and improving recovery. ⋯ There is a huge unmet clinical need to advise patients responsibly about whether they should remain on their immunomodulatory treatment or not in light of Covid-19 infection. In this article we will discuss potential treatment options for SARS-CoV-2 using immunomodulatory drugs and at what stage of the condition they may be beneficial. Viable treatment options during the global coronavirus pandemic are a much-needed and an intensely active area of research.